NUMERICALLY INDUCED CHAOS IN THE NONLINEAR SCHRODINGER-EQUATION

被引:137
作者
HERBST, BM [1 ]
ABLOWITZ, MJ [1 ]
机构
[1] CLARKSON UNIV,DEPT MATH & COMP SCI,POTSDAM,NY 13676
关键词
D O I
10.1103/PhysRevLett.62.2065
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2065 / 2068
页数:4
相关论文
共 24 条
[1]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[3]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[4]  
BISHOP A, IN PRESS
[5]  
Bogolyubov N. N. Jr., 1982, Soviet Physics - Doklady, V27, P113
[6]   ORDER AND DISORDER IN TWO-DIMENSIONAL AND 3-DIMENSIONAL BENARD CONVECTION [J].
CURRY, JH ;
HERRING, JR ;
LONCARIC, J ;
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1984, 147 (OCT) :1-38
[7]  
DAVEYDOV AS, 1973, J THEOR BIOL, V38, P559
[8]  
DAVEYDOV AS, 1982, SOV PHYS USP, V25, P898
[9]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309
[10]  
DOERING CR, 1987, PHYS REV LETT, V59, P291