SCALING PROPERTIES OF MULTIFRACTAL FUNCTIONS AT AN ATTRACTOR-REPELLER TRANSITION

被引:3
作者
COSENZA, MG [1 ]
SWIFT, JB [1 ]
机构
[1] UNIV TEXAS, DEPT PHYS, AUSTIN, TX 78712 USA
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 12期
关键词
D O I
10.1103/PhysRevA.41.6615
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Multifractal properties of repelling sets generated by hyperbolic maps are studied as a function of a parameter describing a transition to an attracting interval. Critical indices in the scaling behavior of multifractal functions are found when a uniform probability density is assumed. A constant probability is also considered, and the resulting thermodynamiclike functions are investigated close to the critical value of the parameter. © 1990 The American Physical Society.
引用
收藏
页码:6615 / 6620
页数:6
相关论文
共 23 条
[1]   CROSSOVER EFFECT IN THE F(ALPHA) SPECTRUM FOR QUASI-PERIODIC TRAJECTORIES AT THE ONSET OF CHAOS [J].
ARNEODO, A ;
HOLSCHNEIDER, M .
PHYSICAL REVIEW LETTERS, 1987, 58 (20) :2007-2010
[2]  
BLEHER S, UNPUB
[3]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[4]   ORDER PARAMETER, SYMMETRY-BREAKING, AND PHASE-TRANSITIONS IN THE DESCRIPTION OF MULTIFRACTAL SETS [J].
BOHR, T ;
JENSEN, MH .
PHYSICAL REVIEW A, 1987, 36 (10) :4904-4915
[5]   UNIVERSAL ASPECTS OF THE ESCAPE FROM STRANGE SETS [J].
CHRISTENSEN, OB ;
BOHR, T .
PHYSICA SCRIPTA, 1988, 38 (05) :641-644
[6]   MULTIFRACTAL STRUCTURE OF CLUSTERS AND GROWING AGGREGATES [J].
CONIGLIO, A .
PHYSICA A, 1986, 140 (1-2) :51-61
[7]   FINITE-SIZE EFFECTS ON THE F (ALPHA) SPECTRUM OF THE PERIOD-DOUBLING ATTRACTOR [J].
COSENZA, MG ;
MCCORMICK, WD ;
SWIFT, JB .
PHYSICAL REVIEW A, 1989, 39 (05) :2734-2737
[8]   SOME CHARACTERIZATIONS OF STRANGE SETS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :919-924
[9]   SCALING PROPERTIES OF MULTIFRACTALS AS AN EIGENVALUE PROBLEM [J].
FEIGENBAUM, MJ ;
PROCACCIA, I ;
TEL, T .
PHYSICAL REVIEW A, 1989, 39 (10) :5359-5372
[10]  
FRISCH U, 1985, TURBULENCE PREDICTAB