SUPEREXTENSIONS AND THE DEPTH OF MEDIAN GRAPHS

被引:42
作者
BANDELT, HJ [1 ]
VANDEVEL, M [1 ]
机构
[1] FREE UNIV AMSTERDAM,SUBFAK WISKUNDE & INFORMAT,1081 HV AMSTERDAM,NETHERLANDS
关键词
D O I
10.1016/0097-3165(91)90044-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An invariant of convex structures-the depth-is used to study the structure of finite median graphs. The main result is a recursive description of graphs of given depth. This leads to a complete description of the cubical structure of the superextension λ(5) (answering a question in [19]) and to a (less complete) description of superextensions λ(r) for r > 5. An important tool is the construction of certain graphs ρ{variant}(r) of linked bipartitions of the r-point set r. For each r ≥ 3, the graphs λ(r) and ρ{variant}(r) have the same number of vertices, but they are isomorphic (modulo extreme points) for r ≤ 5 only. © 1991.
引用
收藏
页码:187 / 202
页数:16
相关论文
共 21 条
[1]  
BANDELT HJ, 1983, CZECH MATH J, V33, P344
[2]   EMBEDDING TOPOLOGICAL MEDIAN ALGEBRAS IN PRODUCTS OF DENDRONS [J].
BANDELT, HJ ;
VANDEVEL, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1989, 58 :439-453
[3]   MEDIAN ALGEBRAS [J].
BANDELT, HJ ;
HEDLIKOVA, J .
DISCRETE MATHEMATICS, 1983, 45 (01) :1-30
[4]  
BANDELT HJ, 1987, CLIQUE GRAPHS HELLY
[5]   RADON THEOREM IN CONVEX PRODUCT STRUCTURES .2. [J].
ECKHOFF, J .
MONATSHEFTE FUR MATHEMATIK, 1969, 73 (01) :7-&
[6]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[7]  
Escalante F., 1973, ABH MATH SEM HAMBURG, V39, p59?68
[8]   MEDIAN ALGEBRA [J].
ISBELL, JR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 260 (02) :319-362
[9]  
JAMISON RE, 1974, THESIS U WASHINGTON
[10]   SELF-DUAL ELEMENTS OF FREE DISTRIBUTIVE LATTICE AND IPSOTRANSVERSAL SPERNER FAMILIES [J].
MONJARDET, B .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 19 (02) :160-176