RELATIVISTIC QUANTUM KINEMATICS IN THE MOYAL REPRESENTATION

被引:63
作者
CARINENA, JF [1 ]
GRACIABONDIA, JM [1 ]
VARILLY, JC [1 ]
机构
[1] UNIV COSTA RICA,ESCUELA MATEMAT,SAN JOSE,COSTA RICA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 06期
关键词
D O I
10.1088/0305-4470/23/6/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors obtain the phase-space quantisation for relativistic spinning particles. The main tool is what they call a 'Stratonovich-Weyl quantiser' which relates functions on phase space to operators on a suitable Hilbert space, and has the essential properties of covariance (under a group representation) and traciality. Their phase spaces are coadjoint orbits of the restricted Poincare group; they compute and explicitly coordinatise the orbits corresponding to massive particles, with or without spin. Some orbits correspond to unitary irreducible representations of the Poincare group; they show that there is a unique Stratonovich-Weyl quantiser from each of these phase spaces to operators on the corresponding representation spaces, and compute it explicitly.
引用
收藏
页码:901 / 933
页数:33
相关论文
共 54 条
[1]  
ALI ST, 1989, IN PRESS ANN I H POI
[2]  
[Anonymous], 1987, SYMPLECTIC GEOMETRY
[3]   CLASSICAL LORENTZ INVARIANT PARTICLES [J].
ARENS, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (12) :2415-&
[4]   QUANTUM-MECHANICS OF NONLINEAR-SYSTEMS [J].
BAKAS, I ;
KAKAS, AC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12) :3713-3725
[5]   ON UNITARY RAY REPRESENTATIONS OF CONTINUOUS GROUPS [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1954, 59 (01) :1-46
[6]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[7]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[8]  
BAYLIS WE, 1989, J PHYS A-MATH GEN, V22, P1, DOI 10.1016/0920-5632(89)90417-9
[9]  
Bel L., 1980, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V33, P409
[10]   NONEQUILIBRIUM QUANTUM-FIELDS - CLOSED-TIME-PATH EFFECTIVE ACTION, WIGNER FUNCTION, AND BOLTZMANN-EQUATION [J].
CALZETTA, E ;
HU, BL .
PHYSICAL REVIEW D, 1988, 37 (10) :2878-2900