PROTEIN FOLD RECOGNITION

被引:72
作者
JONES, D
THORNTON, J
机构
[1] Biomolecular Structure and Modelling Unit, Department of Biochemistry and Molecular Biology, University College, London
关键词
PROTEINS; PROTEIN STRUCTURE; PROTEIN FOLDING; TERTIARY STRUCTURE PREDICTION; COMPUTER ALGORITHMS;
D O I
10.1007/BF02337560
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An important, yet seemingly unattainable, goal in structural molecular biology is to be able to predict the native three-dimensional structure of a protein entirely from its amino acid sequence. Prediction methods based on rigorous energy calculations have not yet been successful, and best results have been obtained from homology modelling and statistical secondary structure prediction. Homology modelling is limited to cases where significant sequence similarity is shared between a protein of known structure and the unknown. Secondary structure prediction methods are not only unreliable, but also do not offer any obvious route to the full tertiary structure. Recently, methods have been developed whereby entire protein folds are recognized from sequence, even where little or no sequence similarity is shared between the proteins under consideration. In this paper we review the current methods, including our own, and in particular offer a historical background to their development. In addition, we also discuss the future of these methods and outline the developments under investigation in our laboratory.
引用
收藏
页码:439 / 456
页数:18
相关论文
共 57 条
[1]  
BARTON GJ, 1990, METHOD ENZYMOL, V183, P403
[2]   DETERMINANTS OF A PROTEIN FOLD - UNIQUE FEATURES OF THE GLOBIN AMINO-ACID-SEQUENCES [J].
BASHFORD, D ;
CHOTHIA, C ;
LESK, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (01) :199-216
[3]   POLARITY AS A CRITERION IN PROTEIN DESIGN [J].
BAUMANN, G ;
FROMMEL, C ;
SANDER, C .
PROTEIN ENGINEERING, 1989, 2 (05) :329-334
[4]   PATTERNS OF DIVERGENCE IN HOMOLOGOUS PROTEINS AS INDICATORS OF SECONDARY AND TERTIARY STRUCTURE - A PREDICTION OF THE STRUCTURE OF THE CATALYTIC DOMAIN OF PROTEIN-KINASES [J].
BENNER, SA ;
GERLOFF, D .
ADVANCES IN ENZYME REGULATION, 1991, 31 :121-181
[5]   CORRECT STRUCTURE PREDICTION [J].
BENNER, SA ;
COHEN, MA ;
GERLOFF, D .
NATURE, 1992, 359 (6398) :781-781
[6]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[7]   AN ATPASE DOMAIN COMMON TO PROKARYOTIC CELL-CYCLE PROTEINS, SUGAR KINASES, ACTIN, AND HSP70 HEAT-SHOCK PROTEINS [J].
BORK, P ;
SANDER, C ;
VALENCIA, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (16) :7290-7294
[8]   A METHOD TO IDENTIFY PROTEIN SEQUENCES THAT FOLD INTO A KNOWN 3-DIMENSIONAL STRUCTURE [J].
BOWIE, JU ;
LUTHY, R ;
EISENBERG, D .
SCIENCE, 1991, 253 (5016) :164-170
[9]   IDENTIFICATION OF PROTEIN FOLDS - MATCHING HYDROPHOBICITY PATTERNS OF SEQUENCE SETS WITH SOLVENT ACCESSIBILITY PATTERNS OF KNOWN STRUCTURES [J].
BOWIE, JU ;
CLARKE, ND ;
PABO, CO ;
SAUER, RT .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1990, 7 (03) :257-264
[10]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217