GROWING CONDITIONED TREES

被引:33
作者
CHAUVIN, B
ROUAULT, A
WAKOLBINGER, A
机构
[1] UNIV PARIS 11,CNRS,UA 743,F-91405 ORSAY,FRANCE
[2] JOHANNES KEPLER UNIV,INST MATH,A-4040 LINZ,AUSTRIA
关键词
BRANCHING PARTICLE SYSTEMS; GENEALOGICAL TREES; PALM DISTRIBUTIONS;
D O I
10.1016/0304-4149(91)90036-C
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a Markovian branching particle system in R(d) a Palm type distribution on the genealogical trees up to a time horizon t is computed, which generically (i.e. if there are almost surely no multiplicities in the particle positions at time t) can be viewed as a conditional distribution on the trees given that the particle system at time t populates a certain site. The result is obtained in two different ways: by conditioning on the first branching and by means of Kallenberg's method of backward trees.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 17 条
[1]  
CHAUVIN B, 1986, ANN I H POINCARE-PR, V22, P233
[2]  
CHAUVIN B, 1986, ANN I H POINCARE-PR, V22, P209
[3]   KPP EQUATION AND SUPERCRITICAL BRANCHING BROWNIAN-MOTION IN THE SUBCRITICAL SPEED AREA - APPLICATION TO SPATIAL TREES [J].
CHAUVIN, B ;
ROUAULT, A .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :299-314
[4]  
DAWSON D, 1990, 142 CARL U LAB RES S
[5]  
GOROSTIZA LG, 1990, 4112 U LINZ I MATH R
[6]  
GOROSTIZA LG, IN PRESS ANN PROBAB
[7]   THE GROWTH AND COMPOSITION OF BRANCHING POPULATIONS [J].
JAGERS, P ;
NERMAN, O .
ADVANCES IN APPLIED PROBABILITY, 1984, 16 (02) :221-259
[8]   PALM PROBABILITIES [J].
JAGERS, P .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (01) :17-32
[9]   STABILITY OF CRITICAL CLUSTER FIELDS [J].
KALLENBERG, O .
MATHEMATISCHE NACHRICHTEN, 1977, 77 :7-43
[10]  
Kallenberg Olav, RANDOM MEASURES, V3rd