DERIVATION OF THE GEOMETRICAL PHASE

被引:54
作者
BOHM, A
BOYA, LJ
KENDRICK, B
机构
[1] Center for Particle Theory, Department of Physics, University of Texas at Austin, Austin
来源
PHYSICAL REVIEW A | 1991年 / 43卷 / 03期
关键词
D O I
10.1103/PhysRevA.43.1206
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The geometric (Berry) phase is shown to have its origin in the nontrivial geometry of the fiber bundle: Hilbert space --> space of states. The nontrivial geometry comes simply from the scalar product in Hilbert space. A comprehensive treatment of the geometrical phase is presented, bringing together the various ideas in the literature.
引用
收藏
页码:1206 / 1210
页数:5
相关论文
共 14 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   COMMENT ON GEOMETRIC PHASES FOR CLASSICAL FIELD-THEORIES [J].
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1988, 60 (24) :2555-2555
[3]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[5]  
EGUCHI T, 1980, PHYS REP, V66, P213, DOI 10.1016/0370-1573(80)90130-1
[6]   INTERSECTION OF POTENTIAL ENERGY SURFACES IN POLYATOMIC MOLECULES [J].
HERZBERG, G ;
LONGUETHIGGINS, HC .
DISCUSSIONS OF THE FARADAY SOCIETY, 1963, (35) :77-&
[7]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V2
[8]  
KOBAYASHI S, 1969, F DIFFERENTIAL GEOME, V1
[9]   DETERMINATION OF BORN-OPPENHEIMER NUCLEAR MOTION WAVE-FUNCTIONS INCLUDING COMPLICATIONS DUE TO CONICAL INTERSECTIONS AND IDENTICAL NUCLEI [J].
MEAD, CA ;
TRUHLAR, DG .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (05) :2284-2296
[10]   GEOMETRICAL DESCRIPTION OF BERRYS PHASE [J].
PAGE, DN .
PHYSICAL REVIEW A, 1987, 36 (07) :3479-3481