RANDOM FRACTALS, PHASE-TRANSITIONS, AND NEGATIVE DIMENSION SPECTRA

被引:15
作者
JENSEN, MH
PALADIN, G
VULPIANI, A
机构
[1] UNIV ROMA LA SAPIENZA, DIPARTIMENTO FIS, I-00185 ROME, ITALY
[2] UNIV AQUILA, DIPARTIMENTO FIS, I-67100 COPPITO AQUILA, ITALY
关键词
D O I
10.1103/PhysRevE.50.4352
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce an exactly solvable model of a random fractal which, for any finite resolution of the length scale l, exhibits a negative part of the dimension spectrum f() corresponding to the strongest singularities of the probability measure with 0. The right section of the spectrum, corresponding to the regular part of the measure, is not well defined for l0. These two effects are related to the fact that the generalized dimensions (q) exhibit (1) a first-order phase transition at q=1 and (2) a nonexistence of the thermodynamic limit l0, for q<0. We show that an appropriate description of the scaling can be obtained by considering the logarithm of the probability of picking a singularity on the fractal. The connections to fractal aggregates are briefly discussed. © 1994 The American Physical Society.
引用
收藏
页码:4352 / 4356
页数:5
相关论文
共 28 条
[1]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[2]   BREAKDOWN OF MULTIFRACTAL BEHAVIOR IN DIFFUSION-LIMITED AGGREGATES [J].
BLUMENFELD, R ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2977-2980
[3]   FRACTAL AGGREGATES IN THE COMPLEX-PLANE [J].
BOHR, T ;
CVITANOVIC, P ;
JENSEN, MH .
EUROPHYSICS LETTERS, 1988, 6 (05) :445-450
[4]  
CHABRA AB, 1992, PHYS REV LETT, V68, P2762
[5]  
CHABRA AB, 1991, PHYS REV A, V43, P1114
[6]  
CVITANOVIC P, 1988, NONLINEAR EVOLUTION
[7]  
CVITANOVIC P, 1987, 14TH P C GROUP THEOR
[8]   SELF-SIMILARITY OF HARMONIC MEASURE ON DLA [J].
EVERTSZ, CJG ;
MANDELBROT, BB .
PHYSICA A, 1992, 185 (1-4) :77-86
[9]   BREAKDOWN OF MULTIFRACTAL BEHAVIOR IN DIFFUSION-LIMITED AGGREGATES - COMMENT [J].
FOURCADE, B ;
TREMBLAY, AMS .
PHYSICAL REVIEW LETTERS, 1990, 64 (15) :1842-1842
[10]   GENERALIZED DIMENSIONS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1983, 97 (06) :227-230