EXISTENCE OF MINIMAL IMMERSIONS OF 2-SPHERES

被引:11
作者
SACKS, J
UHLENBECK, K
机构
[1] UNIV ILLINOIS,DEPT MATH,URBANA,IL 61801
[2] UNIV ILLINOIS,DEPT MATH,CHICAGO,IL 60680
关键词
D O I
10.1090/S0002-9904-1977-14366-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1033 / 1036
页数:4
相关论文
共 11 条
[1]   VOLUME DECREASING PROPERTY OF A CLASS OF REAL HARMONIC MAPPINGS [J].
CHERN, S ;
GOLDBERG, SI .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (01) :133-147
[2]   A SETTING FOR GLOBAL ANALYSIS [J].
EELLS, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (05) :751-&
[3]   HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
EELLS, J ;
SAMPSON, JH .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) :109-&
[4]  
EELLS J, 1966, VARIATIONAL THEORY F, P22
[5]   ON THE LOCAL BEHAVIOR OF SOLUTIONS OF NON-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS [J].
HARTMAN, P ;
WINTNER, A .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (03) :449-476
[6]  
Morrey C. B., 1966, MULTIPLE INTEGRALS C, V130
[7]   THE PROBLEM OF PLATEAU ON A RIEMANNIAN MANIFOLD [J].
MORREY, CB .
ANNALS OF MATHEMATICS, 1948, 49 (04) :807-851
[8]  
PALAIS R, 1968, F GLOBAL NONLINEAR A
[9]  
Palais R.S., 1966, TOPOLOGY, V5, P115, DOI 10.1016/0040-9383(66)90013-9
[10]  
Palais Richard S., 1966, TOPOLOGY, V5, P1