WEYL MANIFOLDS AND DEFORMATION QUANTIZATION

被引:137
作者
OMORI, H [1 ]
MAEDA, Y [1 ]
YOSHIOKA, A [1 ]
机构
[1] KEIO UNIV,FAC SCI & TECHNOL,DEPT MATH,YOKOHAMA,KANAGAWA 223,JAPAN
关键词
D O I
10.1016/0001-8708(91)90057-E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:224 / 255
页数:32
相关论文
共 12 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[3]   EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORMATIONS OF THE POISSON LIE-ALGEBRA OF ARBITRARY SYMPLECTIC-MANIFOLDS [J].
DEWILDE, M ;
LECOMTE, PBA .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (06) :487-496
[4]  
DeWitt B., 1984, SUPERMANIFOLDS
[5]  
Karasev M., 1984, MATH USSR IZV, V23, P277
[6]   QUANTIZATION OF RAPIDLY OSCILLATING SYMBOLS [J].
KARASEV, MV ;
NAZAIKINSKII, VE .
MATHEMATICS OF THE USSR-SBORNIK, 1978, 34 (06) :737-764
[7]   ASYMPTOTIC AND GEOMETRIC-QUANTIZATION [J].
KARASEV, MV ;
MASLOV, VP .
RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (06) :133-205
[8]   INTRODUCTION TO THE THEORY OF SUPERMANIFOLDS [J].
LEITES, DA .
RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (01) :1-64
[9]   QUANTUM MECHANICS AS A STATISTICAL THEORY [J].
MOYAL, JE .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1949, 45 (01) :99-124
[10]  
NEROSLAVSKY OM, 1981, CR ACAD SCI I-MATH, V292, P71