ROLE OF IRON, HYDROGEN-PEROXIDE AND REACTIVE OXYGEN SPECIES IN MICROSOMAL OXIDATION OF GLYCEROL TO FORMALDEHYDE

被引:22
作者
CLEJAN, LA [1 ]
CEDERBAUM, AI [1 ]
机构
[1] CUNY MT SINAI SCH MED, DEPT BIOCHEM, BOX 1020, 1 GUSTAVE L LEVY PL, NEW YORK, NY 10029 USA
关键词
D O I
10.1016/0003-9861(91)90331-C
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rat liver microsomes can oxidize glycerol to formaldehyde. This oxidation is sensitive to catalase and glutathione plus glutathione peroxidase, suggesting a requirement for H2O2 in the overall pathway of glycerol oxidation. Hydrogen peroxide can not replace NADPH in supporting glycerol oxidation; however, added H2O2 increased the NADPH-dependent rate. Ferric chloride or ferric-ATP had no effect on glycerol oxidation, whereas ferric-EDTA was inhibitory. Certain iron chelators such as desferrioxamine, EDTA or diethylenetriaminepentaacetic acid, but not others such as ADP or citrate, inhibited glycerol oxidation. The inhibition by desferrioxamine could be overcome by added iron. Neither superoxide dismutase nor hydroxyl radical scavengers had any effect on glycerol oxidation. With the exception of propyl gallate, several antioxidants which inhibit lipid peroxidation had no effect on formaldehyde production from glycerol. The inhibition by propyl gallate could be overcome by added iron. In contrast to glycerol, formaldehyde production from dimethylnitrosamine was not sensitive to catalase or iron chelators, thus disassociating the overall pathway of glycerol oxidation from typical mixed-function oxidase activity of cytochrome P450. These studies indicate that H2O2 and nonheme iron are required for glycerol oxidation to formaldehyde. The responsible oxidant is not superoxide, H2O2, or hydroxyl radical. Cytochrome P450 may function to generate the H2O2 and reduce the nonheme iron. There may be additional roles for P450 since rates of formaldehyde production by microsomes exceed rates found with model chemical systems. Elevated rates of H2O2 production by certain P450 isozymes, e.g., P450 IIE1, may contribute to enhanced rates of glycerol oxidation. © 1991.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 53 条