SYMMETRIES OF THE EINSTEIN EQUATIONS

被引:40
作者
TORRE, CG [1 ]
ANDERSON, IM [1 ]
机构
[1] UTAH STATE UNIV,DEPT MATH & STAT,LOGAN,UT 84322
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.70.3525
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify all generalized symmetries of the vacuum Einstein equations in four spacetime dimensions. They consist of constant scalings of the metric and of the infinitesimal action of generalized spacetime diffeomorphisms. Our results rule out a large class of possible ''observables'' for the gravitational field, and suggest that the vacuum Einstein equations are not integrable.
引用
收藏
页码:3525 / 3529
页数:5
相关论文
共 27 条
[1]  
ANDERSON IA, IN PRESS
[2]   NATURAL VARIATIONAL-PRINCIPLES ON RIEMANNIAN-MANIFOLDS [J].
ANDERSON, IM .
ANNALS OF MATHEMATICS, 1984, 120 (02) :329-370
[3]  
ANDERSON IM, 1992, MATH ASPECTS CLASSIC
[4]  
ANDERSON IM, 1992, CONT MATH, V32, P51
[5]  
[Anonymous], WHAT IS INTEGRABILIT
[6]  
Bluman G. W., 1989, SYMMETRIES DIFFERENT
[7]   SYMMETRIES OF THE SELF-DUAL EINSTEIN EQUATIONS .1. THE INFINITE-DIMENSIONAL SYMMETRY GROUP AND ITS LOW-DIMENSIONAL SUBGROUPS [J].
BOYER, CP ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (05) :1081-1094
[8]  
Epstein D. B. A., 1975, J DIFFER GEOM, V10, P631
[9]  
FOKAS AS, 1987, STUD APPL MATH, V77, P253
[10]  
GOLDBERG JN, 1980, GENERAL RELATIVITY G, V1