ADIABATIC LIMITS OF THE ETA-INVARIANTS THE ODD-DIMENSIONAL ATIYAH-PATODI-SINGER PROBLEM

被引:66
作者
DOUGLAS, RG [1 ]
WOJCIECHOWSKI, KP [1 ]
机构
[1] INDIANA UNIV PURDUE UNIV,DEPT MATH,INDIANAPOLIS,IN 46205
关键词
D O I
10.1007/BF02099174
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the eta-invariant of boundary value problems of Atiyah-Patodi-Singer type. We prove the formula for the spectral flow of the families over S1. Assuming a product structure in a collar neighbourhood of the boundary, we show that the eta-invariant behaves the same way as on a closed manifold. We also study the "adiabatic" limit of the eta-invariant. In fact, we present a general method for the calculation of the "adiabatic" limits of the spectral invariants. In nice cases we are able to split them into a contribution from the interior, one from the cylinder, and an error term. Then we show that the error term disappears with the increasing length of the cylinder.
引用
收藏
页码:139 / 168
页数:30
相关论文
共 23 条
[1]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .3. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :71-99
[2]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[3]  
Bismut J.-M., 1989, J AM MATH SOC, V2, P33, DOI 10.2307/1990912
[4]   THE ANALYSIS OF ELLIPTIC FAMILIES .2. DIRAC OPERATORS, ETA-INVARIANTS, AND THE HOLONOMY THEOREM [J].
BISMUT, JM ;
FREED, DS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (01) :103-163
[5]  
BOJARSKI B, 1979, MEMORIAM IN VEKUA, P43
[6]  
Booss-Bavnbek B, 1985, ANN GLOB ANAL GEOM, V3, P337
[7]  
Booss-Bavnbek B, 1986, ANN GLOB ANAL GEOM, V4, P349
[8]   PSEUDODIFFERENTIAL PROJECTIONS AND THE TOPOLOGY OF CERTAIN SPACES OF ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
BOOSSBAVNBEK, B ;
WOJCIECHOWSKI, KP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (01) :1-9
[9]  
DOUGLAS RG, 1989, Z ANAL ANWEND, V8, P485
[10]  
Gilkey P., 1984, INVARIANCE THEORY HE