THE NEWTONIAN LIMIT FOR ASYMPTOTICALLY FLAT SOLUTIONS OF THE VLASOV-EINSTEIN SYSTEM

被引:43
作者
RENDALL, AD [1 ]
机构
[1] SYRACUSE UNIV,DEPT PHYS,SYRACUSE,NY 13244
关键词
D O I
10.1007/BF02101736
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that there exist families of asymptotically flat solutions of the Einstein equations coupled to the Vlasov equation describing a collisionless gas which have a Newtonian limit. These are sufficiently general to confirm that for this matter model as many families of this type exist as would be expected on the basis of physical intuition. A central role in the proof is played by energy estimates in unweighted Sobolev spaces for a wave equation satisfied by the second fundamental form of a maximal foliation.
引用
收藏
页码:89 / 112
页数:24
相关论文
共 22 条
[1]  
[Anonymous], COMPRESSIBLE FLUID F
[2]  
ASANO K, 1986, PATTERNS WAVES
[3]   GLOBAL SYMMETRIC SOLUTIONS OF INITIAL VALUE-PROBLEM OF STELLAR DYNAMICS [J].
BATT, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (03) :342-364
[4]   NECESSARY AND SUFFICIENT CONDITION FOR YORK DATA TO SPECIFY AN ASYMPTOTICALLY FLAT SPACETIME [J].
CANTOR, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (08) :1741-1744
[5]  
CARTAN E, 1922, ANN EC NORM SUPER, V39, P325
[6]  
Cartan E., 1924, ANN ECOLE NORMALE SU, V41, P1, DOI DOI 10.24033/ASENS.753
[7]   FR CAUCHY-PROBLEM FOR EINSTEIN-LIOUVILLE DIFFERENTIAL INTEGRAL SYSTEM [J].
CHOQUETBRUHAT, Y .
ANNALES DE L INSTITUT FOURIER, 1971, 21 (03) :181-+
[8]  
Dautray R., 1990, MATH ANAL NUMERICAL, V1
[9]  
DEGOND P, 1986, MATH METHOD APPL SCI, V8, P533, DOI 10.1002/mma.1670080135
[10]  
DIEUDONNE J, 1969, F MODERN ANAL