INVERSE KINEMATICS OF GENERAL 6R AND 5R, P-SERIAL MANIPULATORS

被引:23
作者
KOHLI, D
OSVATIC, M
机构
[1] Mechanical Engineering Dept, University of Wisconssin-Milwaukee, Milwaukee, WI
关键词
D O I
10.1115/1.2919288
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper we present a solution to the inverse kinematics problems for serial manipulators of general geometry. The method is presented in detail as it applies to a 6R manipulator of general geometry. The equations used are derived using power products and dialytic elimination. In doing this, all variables except one, a tangent half angle of a joint variable, can be eliminated. The result is a 16 by 16 matrix in which all terms are linear in the suppressed variable. The unique design of this matrix allows the suppressed variable to be solved as an eigenvalue problem. Substituting these values of the suppressed variable back into the equations, all other joint variables can be found using linear equations. The result is the 16 solutions expected for the 6R case. The same technique is also applicable to manipulators with prismatic joints. We present the solution technique for all six possible 5R,P manipulators through numerical examples. The primary distinction between the technique presented in this paper and the recently published Raghavan and Roth (1990) solution is that they removed two spurious imaginary roots of multiplicity four from a 24th order polynomial to obtain a 16th order polynomial for 6R and 5R, P cases. In our formulation, the 16th degree polynomial can be derived directly without having to remove any spurious imaginary roots. Another distinction is that the solution procedure can be reduced to an eigenvalue problem. This results in significant gains in computation time.
引用
收藏
页码:922 / 931
页数:10
相关论文
共 10 条
[1]  
Duffy J., Analysis of Mechanisms and Manipulators, (1980)
[2]  
Duffy J., Crane C., A Displacement Analysis of the General Spatial 7R Mechanism, Mechanism and Machine Theory, 15, pp. 153-169, (1980)
[3]  
Lee H.Y., Liang C.G., A New Vector Theory for the Analysis of Spatial Mechanisms, Mechanism and Machine Theory, 23, 3, pp. 209-217, (1988)
[4]  
Lee H.Y., Liang C.G., Displacement Analyses of General Spatial 7-link 7R Mechanism, Mechanism and Machine Theory, 23, 3, pp. 219-226, (1988)
[5]  
Lee H.Y., Woernle C., Miller M., A Complete Solution for the Inverse Kinematic Problem of the General 6R Robot Manipulators, Proceedings of the ASME Mechanisms Conference, (1990)
[6]  
Osvatic M., Inverse Kinematics of General Serial Manipulators, (1991)
[7]  
Raghavan M., Roth B., Inverse Kinematics of the General 6R Manipulator and Related Linkages, Proceedings of the ASME Mechanisms Conference, (1990)
[8]  
Raghavan M., Roth B., Kinematic Analysis of the 6R Manipulator of General Geometry, Proceedings of the 5Th International Symposium on Robotics Research, (1990)
[9]  
Raghavan M., Roth B., A General Solution for the Inverse Kinematics of All Series Chains, Proceedings of the Eighth CISM-IFTOMM Symposium on Robots and Manipulators (ROMANSY-90), (1990)
[10]  
Tsai L.-W., Morgan A., Solving the Kinematics of the Most General Six and Five Degree of Freedom Manipulators by Continuation Methods, ASME Journal of Mechanisms, Transmissions, and Automation in Design, 107, pp. 189-200, (1985)