STORAGE CAPACITY AND OPTIMAL LEARNING OF POTTS-MODEL PERCEPTRONS BY A CAVITY METHOD

被引:13
作者
GERL, F [1 ]
KREY, U [1 ]
机构
[1] UNIV REGENSBURG,INST PHYS 3,D-93040 REGENSBURG,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 22期
关键词
D O I
10.1088/0305-4470/27/22/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of a general formulation for the optimal learning capacity of perceptrons with multi-state neurons and real-valued couplings with spherical constraints, which we derive by a cavity method, we calculate the optimal learning capacity alpha(c)(Q', kappa) := p(max)/[N(Q - 1)] for perceptrons with a Q- resp. Q'-state Potts-model input resp. output neurons as a function of Q' and the stability parameter kappa. Among other results, the asymptote for Q' --> infinity is found, and it is shown that for kappa = 0 the information gain per coupling, DELTA I = (alpha(c) ln Q')/(Q' - 1), converges slowly to 1/2 in this limit. Moreover, for Q' --> infinity the same asymptotics also apply for the simple case of Hebbian learning.
引用
收藏
页码:7353 / 7372
页数:20
相关论文
共 21 条
[1]  
Amit D. J, 1989, MODELLING BRAIN FUNC
[2]   STATISTICAL-MECHANICS OF NEURAL NETWORKS NEAR SATURATION [J].
AMIT, DJ ;
GUTFREUND, H ;
SOMPOLINSKY, H .
ANNALS OF PHYSICS, 1987, 173 (01) :30-67
[3]   THE ADATRON - AN ADAPTIVE PERCEPTRON ALGORITHM [J].
ANLAUF, JK ;
BIEHL, M .
EUROPHYSICS LETTERS, 1989, 10 (07) :687-692
[4]  
FLETCHER R, 1988, PRACTICAL METHODS OP
[5]   MAXIMUM STORAGE CAPACITY IN NEURAL NETWORKS [J].
GARDNER, E .
EUROPHYSICS LETTERS, 1987, 4 (04) :481-485
[6]   LEARNING WITH Q-STATE CLOCK NEURONS - OPTIMAL STORAGE CAPACITY AND ADATRON-ALGORITHM [J].
GERL, F ;
BAUER, K ;
KREY, U .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 88 (03) :339-347
[7]  
GERL F, IN PRESS
[8]  
GERL F, 1994, THESIS U REGENSBURG
[9]   CAVITY-APPROACH ANALYSIS OF THE NEURAL-NETWORK LEARNING-PROBLEM [J].
GRINIASTY, M .
PHYSICAL REVIEW E, 1993, 47 (06) :4496-4513
[10]  
HERTZ J, 1994, INTRO THEORY NEURAL