A SYSTEMATIC ELIMINATION PROCEDURE FOR ITO STOCHASTIC DIFFERENTIAL-EQUATIONS AND THE ADIABATIC APPROXIMATION

被引:36
作者
SCHONER, G [1 ]
HAKEN, H [1 ]
机构
[1] UNIV STUTTGART, INST THEORET PHYS, D-7000 STUTTGART 80, FED REP GER
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1987年 / 68卷 / 01期
关键词
D O I
10.1007/BF01307868
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
引用
收藏
页码:89 / 103
页数:15
相关论文
共 13 条
[1]  
Arnold Ludwig, 1974, STOCHASTIC DIFFERENT
[2]   ADIABATIC ELIMINATION IN STOCHASTIC-SYSTEMS .1. FORMULATION OF METHODS AND APPLICATION TO FEW-VARIABLE SYSTEMS [J].
GARDINER, CW .
PHYSICAL REVIEW A, 1984, 29 (05) :2814-2822
[3]  
Gardiner CW, 1983, SPRINGER SERIES SYNE, V13
[4]   SLAVING PRINCIPLE FOR STOCHASTIC DIFFERENTIAL-EQUATIONS WITH ADDITIVE AND MULTIPLICATIVE NOISE AND FOR DISCRETE NOISY MAPS [J].
HAKEN, H ;
WUNDERLIN, A .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (02) :179-187
[5]  
Haken H., 1983, SPRINGER SERIES SYNE, V20
[6]  
Haken H., 1983, SYNERGETICS INTRO
[7]  
HAKEN H, 1970, HDB PHYSIK C, V25
[8]  
Horsthemke W., 1984, SPRINGER SERIES SYNE, V15
[9]   THE SLAVING PRINCIPLE FOR STRATONOVICH STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
SCHONER, G ;
HAKEN, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 63 (04) :493-504
[10]  
SCHONER G, 1985, THESIS U STUTTGART