LORENZ CROSS-SECTIONS OF THE CHAOTIC ATTRACTOR OF THE DOUBLE ROTOR

被引:9
作者
KOSTELICH, EJ
YORKE, JA
机构
[1] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
来源
PHYSICA D | 1987年 / 24卷 / 1-3期
关键词
D O I
10.1016/0167-2789(87)90079-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:263 / 278
页数:16
相关论文
共 14 条
[1]  
Benettin G., 1980, MECCANICA, V15, P9, DOI 10.1007/BF02128236
[2]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[3]   SOME EFFICIENT ALGORITHMS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS [J].
BRENT, RP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :327-344
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[6]  
GREBOGI C, UNPUB PHYSICA D
[7]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77
[8]  
Kaplan J.L., 1979, LECT NOTE MATH, P228
[9]   THE METRIC ENTROPY OF DIFFEOMORPHISMS [J].
LEDRAPPIER, F ;
YOUNG, LS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 11 (02) :343-346
[10]   THE LOCAL-STRUCTURE OF A CHAOTIC ATTRACTOR IN 4 DIMENSIONS [J].
LORENZ, EN .
PHYSICA D, 1984, 13 (1-2) :90-104