BENDING METHOD REVISITED - A HAMILTONIAN APPROACH

被引:19
作者
FARRA, V
机构
[1] Laboratoire de Sismologie, Institut de Physique du Globe, Paris, 75252, 4 Place Jussieu
关键词
BENDING METHOD; HAMILTONIAN APPROACH; PERTURBATION METHOD; 2-POINT RAYTRACING;
D O I
10.1111/j.1365-246X.1992.tb00084.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
For anisotropic media with discontinuities, the bending method is introduced in a very simple way by using the Hamiltonian formulation. Rays propagating in the vicinity of a reference curve are obtained with the help of a propagator. Boundary conditions and interfaces are introduced easily in this formulation. In the second part of the paper, the efficient determination of the propagator is discussed for a 3-D isotropic heterogeneous medium. A finite element approach is proposed in which the medium is divided into a set of elements with a simple polynomial distribution. Analytical expressions of rays are obtained for such a medium. Examples of calculation of rays are presented.
引用
收藏
页码:138 / 150
页数:13
相关论文
共 36 条
[1]  
Aki K, 1980, QUANTITATIVE SEISMOL, V2
[2]  
BABICH VM, 1961, PROBLEMS DYNAMIC THE, V5, P36
[3]  
Boor CD., 1978, PRACTICAL GUIDE SPLI
[4]  
BURRIDGE R, 1976, SOME MATH TOPICS SEI
[5]   RAY TRACING IN FACTORIZED ANISOTROPIC INHOMOGENEOUS-MEDIA [J].
CERVENY, V .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1989, 99 (01) :91-100
[6]   SEISMIC RAYS AND RAY INTENSITIES IN INHOMOGENEOUS ANISOTROPIC MEDIA [J].
CERVENY, V .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1972, 29 (01) :1-&
[7]  
Cerveny V., 1987, REIDEL DORDRECHT, P99
[8]  
CERVENY V, 1985, HDB GEOPHYSICAL EXPL, P1
[9]  
CERVENY V, 1977, RAY METHOD SEISMOLOG
[10]  
CHAPMAN CH, 1985, J GEOPHYS-Z GEOPHYS, V58, P27