CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR AND THE ETIOLOGY AND PATHOGENESIS OF CYSTIC-FIBROSIS

被引:39
作者
MCINTOSH, I
CUTTING, GR
机构
[1] JOHNS HOPKINS UNIV, SCH MED, CTR MED GENET, BALTIMORE, MD 21205 USA
[2] JOHNS HOPKINS UNIV, SCH MED, DEPT PHYSIOL, BALTIMORE, MD 21205 USA
[3] JOHNS HOPKINS UNIV, SCH MED, DEPT PEDIAT, BALTIMORE, MD 21205 USA
[4] JOHNS HOPKINS UNIV, SCH MED, DEPT MED, BALTIMORE, MD 21205 USA
关键词
CHLORIDE CHANNEL; MUTATIONS; STRUCTURE FUNCTION RELATIONSHIPS; PHOSPHORYLATION; GENETIC DISEASE; HUMAN; POSITIONAL CLONING;
D O I
10.1096/fasebj.6.10.1378801
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cystic fibrosis (CF) is an inherited disorder causing pancreatic, pulmonary, and sinus disease in children and young adults. Abnormal viscosity of mucous secretions is a hallmark of the disease, and is believed to be the result of altered electrolyte transport across epithelial cell membranes. The monogenic etiology of this disease has been apparent for more than 40 years, but the defective gene has only recently been identified. This was made possible because of a revolution in genetic technology, called positional cloning, which can pinpoint disease genes without previous knowledge of the abnormal protein product. The protein encoded by the gene defective in CF has been termed the CF transmembrane conductance regulator (CFTR) because of its postulated role in electrolyte transport. Studies investigating the normal function of CFTR and how mutations affect that function, thereby causing CF, have required the combined skills of clinicians, geneticists, molecular biologists, and physiologists. From this collaborative effort a greater understanding of the pathogenesis of this disorder is now emerging. It may soon be possible to introduce novel therapies derived from this new knowledge that will be aimed directly at the basic defect. An ever-increasing number of genes of unknown function will be identified by continuing advances in molecular genetic technology and the advent of the genome sequencing project. The experience in cystic fibrosis research may prove to be a paradigm for investigation of the function of genes isolated by positional cloning methods.
引用
收藏
页码:2775 / 2782
页数:8
相关论文
共 75 条
[1]  
ADAMS JG, 1990, SEMIN HEMATOL, V27, P229
[2]   NUCLEOSIDE TRIPHOSPHATES ARE REQUIRED TO OPEN THE CFTR CHLORIDE CHANNEL [J].
ANDERSON, MP ;
BERGER, HA ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
CELL, 1991, 67 (04) :775-784
[3]   DEMONSTRATION THAT CFTR IS A CHLORIDE CHANNEL BY ALTERATION OF ITS ANION SELECTIVITY [J].
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
SOUZA, DW ;
PAUL, S ;
MULLIGAN, RC ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 253 (5016) :202-205
[4]   GENERATION OF CAMP-ACTIVATED CHLORIDE CURRENTS BY EXPRESSION OF CFTR [J].
ANDERSON, MP ;
RICH, DP ;
GREGORY, RJ ;
SMITH, AE ;
WELSH, MJ .
SCIENCE, 1991, 251 (4994) :679-682
[5]   DEFECTIVE ACIDIFICATION OF INTRACELLULAR ORGANELLES IN CYSTIC-FIBROSIS [J].
BARASCH, J ;
KISS, B ;
PRINCE, A ;
SAIMAN, L ;
GRUENERT, D ;
ALAWQATI, Q .
NATURE, 1991, 352 (6330) :70-73
[6]   PURIFICATION AND FUNCTIONAL RECONSTITUTION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR) [J].
BEAR, CE ;
LI, CH ;
KARTNER, N ;
BRIDGES, RJ ;
JENSEN, TJ ;
RAMJEESINGH, M ;
RIORDAN, JR .
CELL, 1992, 68 (04) :809-818
[7]   IDENTIFICATION AND REGULATION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR-GENERATED CHLORIDE CHANNEL [J].
BERGER, HA ;
ANDERSON, MP ;
GREGORY, RJ ;
THOMPSON, S ;
HOWARD, PW ;
MAURER, RA ;
MULLIGAN, R ;
SMITH, AE ;
WELSH, MJ .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 88 (04) :1422-1431
[8]  
Boat TF., 1989, CYSTIC FIBROSIS META, V6th, P2649
[9]  
BONDUELLE M, 1990, HUM GENET, V85, P436
[10]  
CARROLL TP, 1991, PEDIATR PULM S, V6, P223