EXACT-SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM-WALKS

被引:88
作者
HILFER, R
机构
[1] SCUOLA INT SUPER STUDI AVANZATI,I-34013 TRIESTE,ITALY
[2] UNIV MAINZ,INST PHYS,D-55099 MAINZ,GERMANY
来源
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE | 1995年 / 3卷 / 01期
关键词
D O I
10.1142/S0218348X95000163
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractal time random walks with generalized Mittag-Leffler functions as waiting time densities are studied. This class of fractal time processes is characterized by a dynamical critical exponent 0 < omega less than or equal to 1, and is equivalently described by a fractional master equation with time derivative of noninteger order omega. Exact Greens functions corresponding to fractional diffusion are obtained using Mellin transform techniques. The Greens functions are expressible in terms of general H-functions. For omega < 1 they are singular at the origin and exhibit a stretched Gaussian form at infinity. Changing the order omega interpolates smoothly between ordinary diffusion omega = 1 and completely localized behavior in the omega --> 0 limit.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 28 条
[1]  
BLUMEN A, 1986, OPTICAL SPECTROSCOPY
[2]  
Erdelyi A., 1981, HIGHER TRANSCENDENTA, VIII
[3]  
FRIEDERICH C, 1991, RHEOLOGICAL MODELING, P309
[4]   A method of analyzing experimental results obtained from elasto-viscous bodies [J].
Gemant, Andrew .
PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1936, 7 (01) :311-317
[5]   CLASSIFICATION-THEORY FOR ANEQUILIBRIUM PHASE-TRANSITIONS [J].
HILFER, R .
PHYSICAL REVIEW E, 1993, 48 (04) :2466-2475
[6]  
HILFER R, 1995, IN PRESS CHAOS SOLIT
[7]  
Hilfer R., 1994, RANDOM MAGNETISM HIG, P85
[8]  
HILFER R, 1995, IN PRESS PHYS REV E
[9]  
Jonscher A. K., 1983, DIELECTRIC RELAXATIO
[10]   STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION [J].
KLAFTER, J ;
BLUMEN, A ;
SHLESINGER, MF .
PHYSICAL REVIEW A, 1987, 35 (07) :3081-3085