ROBUST BAYESIAN HYPOTHESIS-TESTING IN THE PRESENCE OF NUISANCE PARAMETERS

被引:5
作者
BERGER, J
MORTERA, J
机构
[1] PURDUE UNIV,DEPT STAT,W LAFAYETTE,IN 47907
[2] UNIV TRENT,I-38050 TRENT,ITALY
基金
美国国家科学基金会;
关键词
BAYES FACTOR; NUISANCE PARAMETERS; P-VALUES; POINT NULL HYPOTHESIS; ROBUST BAYESIAN ANALYSIS;
D O I
10.1016/0378-3758(94)90131-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Robust Bayesian testing of point null hypotheses is considered for problems involving the presence of nuisance parameters. The robust Bayesian approach seeks answers that hold for a range of prior distributions. Three techniques for handling the nuisance parameter are studied and compared. They are (i) utilize a noninformative prior to integrate out the nuisance parameter, (ii) utilize a test statistic whose distribution does not depend on the nuisance parameter; and (iii) use a class of prior distributions for the nuisance parameter. These approaches are studied in two examples, the univariate normal model with unknown mean and variance, and a multivariate normal example.
引用
收藏
页码:357 / 373
页数:17
相关论文
共 16 条
[1]  
BERGER J, 1992, RASSEGNA METODI STAT, V7
[2]  
BERGER J, 1986, PACIFIC STATISTICAL, P21
[3]  
Berger J. O., 1987, STAT SCI, V2, P317
[4]  
Berger J.O., 1985, STAT DECISION THEORY, P74
[5]  
BERGER JO, 1987, J AM STAT ASSOC, V82, P112, DOI 10.2307/2289131
[6]   INTERPRETING THE STARS IN PRECISE HYPOTHESIS-TESTING [J].
BERGER, JO ;
MORTERA, J .
INTERNATIONAL STATISTICAL REVIEW, 1991, 59 (03) :337-353
[7]  
BERGER JO, 1992, BAYESIAN STATISTICS, V4
[8]  
BERTOLINO F, 1990, STATISTICIAN, V39, P415
[9]   LOWER BOUNDS ON BAYES FACTORS FOR INVARIANT TESTING SITUATIONS [J].
DELAMPADY, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 28 (02) :227-246
[10]   LOWER BOUNDS ON BAYES FACTORS FOR MULTINOMIAL DISTRIBUTIONS, WITH APPLICATION TO CHI-SQUARED TESTS OF FIT [J].
DELAMPADY, M ;
BERGER, JO .
ANNALS OF STATISTICS, 1990, 18 (03) :1295-1316