LINK INVARIANTS OF FINITE-TYPE AND PERTURBATION-THEORY

被引:79
作者
BAEZ, JC
机构
[1] Department of Mathematics, University of California, Riverside, 92521, CA
关键词
D O I
10.1007/BF00420517
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Vassiliev-Gusarov fink invariants of finite type are known to be closely related to perturbation theory for Chem-Simons theory. In order to clarify the perturbative nature of such link invariants, we introduce an algebra V(infinity) containing elements g(i) satisfying the usual braid group relations and elements a(i) satisfying g(i) - g(i)-1 = epsilona(i), where epsilon is a formal variable that may be regarded as measuring the failure of g(i)2 to equal 1. Topologically, the elements a(i) signify intersections. We show that a large class of link invariants of finite type are in one-to-one correspondence with homogeneous Markov traces on V(infinity). We sketch a possible application of link invariants of finite type to a manifestly diffeomorphism-invariant perturbation theory for quantum gravity in the loop representation.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 22 条
[1]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[2]  
BAEZ J, 1992, QUANTUM GRAVITY ALGE
[3]  
BARNATAN D, 1992, ISOTOPY INVARIANCE K
[4]  
BIRMAN J, 1991, KNOT POLYNOMIALS VAS
[5]  
Birman J. S., 1974, ANN MATH STUD, P228
[6]   KNOT INVARIANTS AS NONDEGENERATE QUANTUM GEOMETRIES [J].
BRUGMANN, B ;
GAMBINI, R ;
PULLIN, J .
PHYSICAL REVIEW LETTERS, 1992, 68 (04) :431-434
[7]  
BRUGMANN B, 1992, JONES POLYNOMIALS IN
[8]   QUANTUM-FIELD THEORY AND LINK INVARIANTS [J].
COTTARAMUSINO, P ;
GUADAGNINI, E ;
MARTELLINI, M ;
MINTCHEV, M .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :557-574
[9]  
GAMBINI R, 1992, LINK INVARIANT POLYN
[10]   WILSON LINES IN CHERN-SIMONS THEORY AND LINK INVARIANTS [J].
GUADAGNINI, E ;
MARTELLINI, M ;
MINTCHEV, M .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :575-607