DEGENERATE REPRESENTATIONS OF SYMPLECTIC GROUPS .2. NONCOMPACT GROUP SP(P,Q)

被引:7
作者
PAJAS, P
机构
[1] Nuclear Research Institute, Czechoslovak Academy of Sciences Řež
关键词
D O I
10.1063/1.1665027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a method based on geometrical properties of homogeneous spaces of rank one homeomorphic to coset spaces of Lie groups, a series of degenerate unitary irreducible representations of the non-compact symplectic group Sp(p,q) is investigated. The representation spaces for a discrete series determined by two integer numbers and a continuous series determined by one real and one integer parameter are given, the corresponding basis functions being formed by the linear combinations of eigenfunctions of the Laplace-Beltrami operator of the considered space. Explicit formulas for the action of generators of Sp(p, q) in these representations are obtained. The results provide a deeper insight into the structure of the two-parameter not most degenerate" unitary representations."
引用
收藏
页码:1777 / &
相关论文
共 22 条
[1]   COUPLING PROBLEM FOR U(P,Q) LADDER REPRESENTATIONS .I. [J].
ANDERSON, RL ;
FISCHER, J ;
RACZKA, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 302 (1471) :491-&
[2]   SYMPLECTIC SYMMETRY OF HADRONS [J].
BACRY, H ;
NUYTS, J ;
VANHOVE, L .
NUOVO CIMENTO, 1965, 35 (02) :510-+
[3]   ON REPRESENTATIONS OF SEMISIMPLE LIE GROUPS .2. [J].
BAIRD, GE ;
BIEDENHARN, LC .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (12) :1449-&
[4]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[5]   A SET OF HARMONIC FUNCTIONS FOR GROUP SU(3) [J].
BEG, MAB ;
RUEGG, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (05) :677-&
[6]  
CHEVALLEY C, 1964, THEORY LIE GROUPS 1
[7]  
Dixmier J, 1961, B SOC MATH FRANCE, V89, P9
[8]  
FISCHER J, 1967, COMMUN MATH PHYS, V4, P8
[9]  
GELFAND IM, 1950, I STEKLOVA, V36, P1
[10]  
GELFAND IM, 1964, AM MATH SOC TRANSL 2, V37, P31