Overexpression of pp60(c-src) in mouse fibroblasts potentiates both agonist-induced signalling through beta-adrenergic receptors and cyclic AMP accumulation in response to cholera toxin [Bushman, Wilson, Luttrell, Moyers and Parsons (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7462-7466; Moyers, Bouton and Parsons (1993) Mol. Cell. Biol. 13, 2391-2400]. In reconstitution experiments in vitro, phosphorylation of G(s alpha) by immune-complexed pp60(c-src) resulted in enhanced rates of receptor-mediated guanosine 5'-[gamma-thio]triphosphate (GTP[S]) binding and GTP hydrolysis [Hausdorff, Pitcher, Luttrell, Linder, Kurose, Parsons, Caron and Lefkowitz (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 5720-5724]. These results suggest that one mechanism by which pp60(c-src) affects signalling through the beta-adrenergic receptor is by phosphorylation and functional alteration of the G protein. To elucidate how phosphorylation of G(s alpha) might affect its function, we subjected phosphorylated, recombinant G(s alpha) to tryptic phosphopeptide analysis. Phosphotryptic peptides were purified by h.p.l.c. and analysed by Edman degradation to determine the cycle numbers at which radiolabelled phosphotyrosine was released. Candidate peptides that contained Tyr residues at the corresponding positions were synthesized, phosphorylated in vitro by pp60(c-src), their migrations in two-dimensional electrophoresis/t.l.c. were compared with those of tryptic phosphopeptides from intact G(s alpha). We report here that G(s alpha) is phosphorylated on two residues by pp60(c-src), namely, Tyr-37 and Tyr-377. Tyr-37 lies near the site of beta gamma binding in the N-terminus, within a region postulated to modulate GDP dissociation and activation by GTP [Johnson, Dhanasekaran, Gupta, Lowndes, Vaillancourt and Ruoho (1991) J. Cell Biochem. 47, 136-146], while Tyr-377 is located in the extreme C-terminus, within a region of G(s alpha) important for receptor interaction [Sullivan, Miller, Masters, Beiderman, Heideman and Bourne (1987) Nature (London) 334, 712-715]. The location of these residues suggests that phosphorylation may affect the function of both of these regulatory domains.