ANALYSIS OF THE EXCEPTIONAL QUEUING SYSTEM BY THE USE OF REGENERATIVE PROCESSES AND ANALYTICAL METHODS

被引:6
作者
MINH, DL
机构
关键词
D O I
10.1287/moor.5.1.147
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A study is made of a queueing system in which the distributions of the first inter-arrival time and the first service time of each busy period are allowed to deviate from the usual GI/G/1 pattern. Under conditions insuring stability we use analytical methods together with the property that the queueing process ″starts anew″ probabilistically whenever an arriving customer initiates a busy period to obtain various transient and stationary results for the system.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 34 条
[1]   2 RESULTS IN THEORY OF QUEUES [J].
ALI, H .
JOURNAL OF APPLIED PROBABILITY, 1970, 7 (01) :219-&
[2]  
Bhat U. N., 1964, CALCUTTA STAT ASS B, V13, P163
[3]   ASYMPTOTIC PROPERTIES OF CUMULATIVE PROCESSES [J].
BROWN, M ;
ROSS, SM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1972, 22 (01) :93-&
[4]  
Cohen J., 1969, SINGLE SERVER QUEUE
[5]  
COHEN JW, 1976, REGENERATIVE PROCESS
[6]   SIMULATING STABLE STOCHASTIC SYSTEMS .1. GENERAL MULTISERVER QUEUES [J].
CRANE, MA ;
IGLEHART, DL .
JOURNAL OF THE ACM, 1974, 21 (01) :103-113
[7]  
EMOINE AJ, 1975, SIAM J APPL MATH, V28, P596
[8]   REMAINING BUSY PERIOD FOR A SINGLE SERVER QUEUE WITH POISSON INPUT [J].
ERLANDER, S .
OPERATIONS RESEARCH, 1965, 13 (05) :734-&
[9]  
EWENS WJ, 1962, BIOMETRIKA, V49, P242
[10]  
FINCH PD, 1959, ACTA MATH ACAD SCI H, V10, P317