SMALL-AMPLITUDE SOLITARY WAVES ON A LATTICE SUBJECT TO NONVANISHING BOUNDARY-CONDITIONS

被引:9
作者
CHUBYKALO, OA [1 ]
KONOTOP, VV [1 ]
VAZQUEZ, L [1 ]
机构
[1] UNIV COMPLUTENSE SOMOSAGUAS,INST EUROPA ORIENTAL,E-28223 MADRID,SPAIN
来源
PHYSICAL REVIEW B | 1993年 / 47卷 / 13期
关键词
D O I
10.1103/PhysRevB.47.7971
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is shown that the dynamics of small-amplitude pulses of the two commonly used discrete versions of the nonlinear Schrodinger equation can be described by the same lattice equation if the background amplitude is not close to unity. It allows us to use an analytical expression for a soliton of an integrable version obtained in the small-amplitude limit to generate solitary-wave solutions of the nonintegrable model. The existence of long-lived stable localized pulses against the nonzero background is discovered. It is found numerically that solitary pulses interact elastically with each other, i.e., they display all of the properties of solitons. In the case when the background amplitude is equal to unity, the integrable discrete model reduces to the Toda lattice.
引用
收藏
页码:7971 / 7978
页数:8
相关论文
共 16 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[2]  
BARASHENKOV IV, 1990, UNPUB PHYS REV A, V42, P1957
[3]  
BASS FG, 1992, UNPUB PHYS REV A, V46, P4185
[4]   POLARONS IN QUASI-ONE-DIMENSIONAL SYSTEMS [J].
CAMPBELL, DK ;
BISHOP, AR ;
FESSER, K .
PHYSICAL REVIEW B, 1982, 26 (12) :6862-6874
[5]   SOME FEATURES OF THE REPULSIVE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
CHUBYKALO, OA ;
KONOTOP, VV ;
VAZQUEZ, L ;
VEKSLERCHIK, VE .
PHYSICS LETTERS A, 1992, 169 (05) :359-363
[6]  
CRUSEIROHANSSON L, 1990, PHYS REV B, V42, P522
[7]  
DAYDOV AS, 1982, SOV PHYS USP, V25, P898
[8]   LYAPUNOV EXPONENTS FOR THE N = 3 DISCRETE SELF-TRAPPING EQUATION [J].
DEFILIPPO, S ;
GIRARD, MF ;
SALERNO, M .
PHYSICA D, 1987, 26 (1-3) :411-414
[9]   FINITE-DIFFERENCE SOLUTIONS OF A NON-LINEAR SCHRODINGER-EQUATION [J].
DELFOUR, M ;
FORTIN, M ;
PAYRE, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 44 (02) :277-288
[10]   OBSERVATIONS OF LOCALIZED STRUCTURES IN NONLINEAR LATTICES - DOMAIN-WALLS AND KINKS [J].
DENARDO, B ;
GALVIN, B ;
GREENFIELD, A ;
LARRAZA, A ;
PUTTERMAN, S ;
WRIGHT, W .
PHYSICAL REVIEW LETTERS, 1992, 68 (11) :1730-1733