AN OPTIMAL ALGORITHM FOR SELECTION IN A MIN-HEAP

被引:45
作者
FREDERICKSON, GN
机构
[1] Department of Computer Science, Purdue University, West Lafayette
关键词
D O I
10.1006/inco.1993.1030
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An O(k)-time algorithm is presented for selecting the kth smallest element in a binary min-heap of size n≫k. The approach uses recursively defined data structures that impose a hierarchical grouping on certain elements in the heap. The result establishes a further example of a partial order for which the kth smallest element can be determined in time proportional to the information theory lower bound. Two applications, to a resource allocation problem and to the enumeration of the k smallest spanning trees, are identified. © 1993 Academic Press, Inc.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 18 条
[1]   AN ADVERSARY-BASED LOWER BOUND FOR SORTING [J].
ATALLAH, MJ ;
KOSARAJU, SR .
INFORMATION PROCESSING LETTERS, 1981, 13 (02) :55-57
[2]  
BENT SW, 1985, 17TH P ANN ACM S THE, P213
[3]  
BLUM M, 1972, J COMPUT SYST SCI, V7, P448
[4]  
BRUCKER P, 1984, LECT NOTES ECON MATH, V226, P299
[5]  
BRUCKER P, 1982, 8TH P C GRAPH THEOR, P25
[6]   AN OPTIMAL-TIME ALGORITHM FOR SLOPE SELECTION [J].
COLE, R ;
SALOWE, JS ;
STEIGER, WL ;
SZEMEREDI, E .
SIAM JOURNAL ON COMPUTING, 1989, 18 (04) :792-810
[7]   THE COMPLEXITY OF SELECTION AND RANKING IN X + Y AND MATRICES WITH SORTED COLUMNS [J].
FREDERICKSON, GN ;
JOHNSON, DB .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1982, 24 (02) :197-208
[8]   GENERALIZED SELECTION AND RANKING - SORTED MATRICES [J].
FREDERICKSON, GN ;
JOHNSON, DB .
SIAM JOURNAL ON COMPUTING, 1984, 13 (01) :14-30
[9]  
FREDERICKSON GN, 1992, CSDTR91048 PURD U DE
[10]  
FREDERICKSON GN, 1990, 22ND P ANN ACM S THE, P26