THE MAXIMUM NUMBER OF WAYS TO STAB N-CONVEX NONINTERSECTING SETS IN THE PLANE IS 2N-2

被引:44
作者
EDELSBRUNNER, H
SHARIR, M
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[2] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
关键词
D O I
10.1007/BF02187778
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let S be a collection of n convex, closed, and pairwise nonintersecting sets in the Euclidean plane labeled from 1 to n. A pair of permutations {Mathematical expression} is called a geometric permutation of S if there is a line that intersects all sets of S in this order. We prove that S can realize at most 2 n-2 geometric permutations. This upper bound is tight. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:35 / 42
页数:8
相关论文
共 9 条
[1]   EFFICIENT ALGORITHMS FOR COMMON TRANSVERSALS [J].
ATALLAH, M ;
BAJAJ, C .
INFORMATION PROCESSING LETTERS, 1987, 25 (02) :87-91
[2]   SOME DYNAMIC COMPUTATIONAL GEOMETRY PROBLEMS [J].
ATALLAH, MJ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1985, 11 (12) :1171-1181
[3]  
EDELSBRUNNER H, 1982, BIT, V22, P274, DOI 10.1007/BF01934440
[4]   NONLINEARITY OF DAVENPORT SCHINZEL SEQUENCES AND OF GENERALIZED PATH COMPRESSION SCHEMES [J].
HART, S ;
SHARIR, M .
COMBINATORICA, 1986, 6 (02) :151-177
[5]   GEOMETRIC PERMUTATIONS FOR CONVEX-SETS [J].
KATCHALSKI, M ;
LEWIS, T ;
ZAKS, J .
DISCRETE MATHEMATICS, 1985, 54 (03) :271-284
[6]   GEOMETRIC PERMUTATIONS AND COMMON TRANSVERSALS [J].
KATCHALSKI, M ;
LEWIS, T ;
LIU, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) :371-377
[7]   ALMOST LINEAR UPPER-BOUNDS ON THE LENGTH OF GENERAL DAVENPORT-SCHINZEL SEQUENCES [J].
SHARIR, M .
COMBINATORICA, 1987, 7 (01) :131-143
[8]  
SHARIR M, 1986, 204 NEW YORK U COUR
[9]  
WENGER R, 1986, TRSOCS8919 MCGILL U