PARTICLE MOTION IN VORTICITY-CONSERVING, 2-DIMENSIONAL INCOMPRESSIBLE FLOWS

被引:29
作者
BROWN, MG [1 ]
SAMELSON, RM [1 ]
机构
[1] WOODS HOLE OCEANOG INST,WOODS HOLE,MA 02543
关键词
D O I
10.1063/1.868112
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown that particle motion is integrable in any vorticity-conserving, two-dimensional incompressible flow if the vorticity is a differentiable function whose gradient never vanishes. More generally, the result is true if any Lagrangian invariant replaces the vorticity.
引用
收藏
页码:2875 / 2876
页数:2
相关论文
共 12 条
[1]   STIRRING BY CHAOTIC ADVECTION [J].
AREF, H .
JOURNAL OF FLUID MECHANICS, 1984, 143 (JUN) :1-21
[3]  
Arnold, 2013, MATH METHODS CLASSIC
[4]   EXPERIMENTAL-STUDY OF LAGRANGIAN TURBULENCE IN A STOKES-FLOW [J].
CHAIKEN, J ;
CHEVRAY, R ;
TABOR, M ;
TAN, QM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 408 (1834) :165-&
[5]   CHAOTIC TRANSPORT BY ROSSBY WAVES IN SHEAR-FLOW [J].
DELCASTILLONEGRETE, D ;
MORRISON, PJ .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (04) :948-965
[6]  
Guckenheimer J., 1992, NONLINEAR OSCILLATIO
[7]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M
[8]  
Moser J., 1973, STABLE RANDOM MOTION
[9]  
Ottino J.M, 1990, KINEMATICS MIXING ST
[10]   CHAOTIC MIXING OF TRACER AND VORTICITY BY MODULATED TRAVELING ROSSBY WAVES [J].
PIERREHUMBERT, RT .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1991, 58 (1-4) :285-&