EXPRESSION OF MUTANT EUKARYOTIC INITIATION-FACTOR-2-ALPHA SUBUNIT (EIF-2-ALPHA) REDUCES INHIBITION OF GUANINE-NUCLEOTIDE EXCHANGE ACTIVITY OF EIF-2B MEDIATED BY EIF-2-ALPHA PHOSPHORYLATION

被引:42
作者
RAMAIAH, KVA
DAVIES, MV
CHEN, JJ
KAUFMAN, RJ
机构
[1] UNIV MICHIGAN,MED CTR,DEPT BIOL CHEM,ANN ARBOR,MI 48109
[2] HARVARD UNIV,MIT,DIV HLTH SCI & TECHNOL,CAMBRIDGE,MA 02139
[3] GENET INST INC,CAMBRIDGE,MA 02140
[4] UNIV MICHIGAN,MED CTR,HOWARD HUGHES MED INST,ANN ARBOR,MI 48109
关键词
D O I
10.1128/MCB.14.7.4546
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.
引用
收藏
页码:4546 / 4553
页数:8
相关论文
共 47 条
[1]   PURIFICATION AND CHARACTERIZATION OF A PROTEIN FACTOR THAT REVERSES THE INHIBITION OF PROTEIN-SYNTHESIS BY THE HEME-REGULATED TRANSLATIONAL INHIBITOR IN RABBIT RETICULOCYTE LYSATES [J].
AMESZ, H ;
GOUMANS, H ;
HAUBRICHMORREE, T ;
VOORMA, HO ;
BENNE, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1979, 98 (02) :513-520
[2]  
ANDREWS NC, 1985, J BIOL CHEM, V260, P7628
[3]  
CHEN JJ, 1989, J BIOL CHEM, V264, P9559
[4]  
CHEN JJ, 1993, TRANSLATIONAL REGULA, V2, P349
[5]  
CHOI SY, 1992, J BIOL CHEM, V267, P286
[6]   PHOSPHORYLATION INHIBITS GUANINE-NUCLEOTIDE EXCHANGE ON EUKARYOTIC INITIATION FACTOR-II [J].
CLEMENS, MJ ;
PAIN, VM ;
WONG, ST ;
HENSHAW, EC .
NATURE, 1982, 296 (5852) :93-95
[7]   STRUCTURE AND REGULATION OF EUKARYOTIC INITIATION-FACTOR EIF-2 - SEQUENCE OF THE SITE IN THE ALPHA-SUBUNIT PHOSPHORYLATED BY THE HEME-CONTROLLED REPRESSOR AND BY THE DOUBLE-STRANDED RNA-ACTIVATED INHIBITOR [J].
COLTHURST, DR ;
CAMPBELL, DG ;
PROUD, CG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 166 (02) :357-363
[8]   COMPLEMENTATION OF ADENOVIRUS VIRUS-ASSOCIATED RNA-I GENE DELETION BY EXPRESSION OF A MUTANT EUKARYOTIC TRANSLATION INITIATION-FACTOR [J].
DAVIES, MV ;
FURTADO, M ;
HERSHEY, JWB ;
THIMMAPPAYA, B ;
KAUFMAN, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (23) :9163-9167
[9]  
DEALDANA CRV, 1993, P NATL ACAD SCI USA, V90, P7215
[10]  
DEBENEDETTI A, 1986, J BIOL CHEM, V261, P338