LIPSCHITZ CONTINUITY FOR CONSTRAINED PROCESSES

被引:168
作者
HAGER, WW
机构
关键词
D O I
10.1137/0317026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lipschitz continuity properties are studied for ″constrained processes″ . As applications of the general theory, mathematical programs and optimal control problems are considered. It is shown that if the gradients of the binding constraints satisfy an independence condition, then the solution and the dual multipliers of a convex mathematical program are a Lipschitz continuous function of the data. Similarly, it is proved that the optimal control and the dual multipliers for strictly convex control problems with convex constraints on the state and the control are Lipschitz continuous in time.
引用
收藏
页码:321 / 338
页数:18
相关论文
共 9 条
[1]  
Daniel J. W., 1973, Mathematical Programming, V5, P41, DOI 10.1007/BF01580110
[2]  
FIACCO AV, 1973, T275 G WASH U I MAN
[3]   LAGRANGE DUALITY THEORY FOR CONVEX CONTROL PROBLEMS [J].
HAGER, WW ;
MITTER, SK .
SIAM JOURNAL ON CONTROL, 1976, 14 (05) :843-856
[4]   RITZ-TREFFTZ METHOD FOR STATE AND CONTROL CONSTRAINED OPTIMAL CONTROL PROBLEMS [J].
HAGER, WW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (06) :854-867
[5]  
Lions J-L., 1971, GRUNDLEHREN MATH WIS, DOI 10.1007/978-3-642-65024-6
[6]  
MALANOWSKI K, UNPUBLISHED
[7]  
Robinson S., 1974, MATHEMATICAL PROGRAM, V7, P1, DOI DOI 10.1007/BF01585500
[8]  
ROBINSON SM, 1977, 1812 U WISC MATH RES
[9]  
ROBINSON SM, 1973, 1357 U WISC MATH RES