SOLUTION OF SCHRODINGER EQUATION IN HARDY-LEBESGUE SPACE

被引:11
作者
IFANTIS, EK
机构
关键词
D O I
10.1063/1.1665830
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1961 / &
相关论文
共 9 条
[1]   SPECTRAL THEORY OF DIFFERENCE EQUATION - F(N+1)+F(N-1)=[E-PHI(N)]F(N) [J].
DELIYANN.PC ;
IFANTIS, EK .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (03) :421-&
[2]   CANONICALLY CONJUGATE PAIRS, UNCERTAINTY RELATIONS, AND PHASE OPERATORS [J].
GARRISON, JC ;
WONG, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (08) :2242-&
[3]   STRUCTURE OF POINT SPECTRUM OF SCHRODINGER-TYPE TRIDIAGONAL OPERATORS [J].
IFANTIS, EK .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (11) :3138-&
[4]   ABSTRACT FORMULATION OF QUANTUM MECHANICAL OSCILLATOR PHASE PROBLEM [J].
IFANTIS, EK .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (06) :1021-+
[5]  
KATO T, 1966, PERTURBATION THEORY, P187
[6]  
KHAVIN VP, 1968, SPACES ANALYTIC FUNC
[7]  
MESCHKOWSKI H, 1959, DIFFERENZENGLEICHUNG, P202
[8]   ON APPLICATION OF BARGMANN HILBERT SPACES TO DYNAMICAL PROBLEMS [J].
SCHWEBER, S .
ANNALS OF PHYSICS, 1967, 41 (02) :205-+
[9]  
TODOROV IT, DERIVATION SOLUTION