JUN AND FOS REGULATION OF NAD(P)H - QUINONE OXIDOREDUCTASE GENE-EXPRESSION

被引:43
作者
JAISWAL, AK
机构
[1] Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, PA, 19111
来源
PHARMACOGENETICS | 1994年 / 4卷 / 01期
关键词
D O I
10.1097/00008571-199402000-00001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
NAD(P)H:Quinone oxidoreductase1 (NQO1) is a flavoprotein which promotes obligatory two-electron reduction of quinones, preventing their participation in redox cycling, oxidative stress and neoplasia. High levels of NQO1 have been observed in several kinds of tumours including that of the liver, lung, colon and breast. Transcription of the NQO1 gene is increased in response to bifunctional [e.g. beta-naphthoflavone (beta-NF), 2,3,7,8,-tetrachlordibenzo-p-dioxin (dioxin)] and monofunctional [phenolic antioxidants/chemoprotectors e.g. 2(3)tert-butyl-4-hydroxy-anisole (BHA)] inducers. High basal expression of the NQO1 gene and its induction by beta-NF and BHA are mediated by 31 bp of the antioxidant response element (ARE) containing more than one copy of the AP1/AP1-like binding sites, Jun and Fos and other(s) as yet unknown regulatory proteins. The arrangement of AP1/AP1-like elements within a short region of DNA may be important for beta-NF and BHA response. The high basal expression of the NQO1 gene in several types of tumour tissues may be due to a high expression and/or modification of regulatory proteins that result from tumour formation. Signal transduction from beta-NF and BHA for increased expression of the NQO1 gene involve metabolism of beta-NF and generation of 'redox signals'. The sequence of events after generation of 'redox signals' leading to the modification/activation of regulatory proteins that bind to ARE and increase expression of the NQO1 gene are less clear. The possibilities include involvement of protein(s) which receive signals from beta-NF and BHA and modulate the Jun and Fos proteins for increased binding to the ARE element or increased activities of the transcriptional activation domains of the regulatory proteins. The modifications in the regulatory proteins may be reduction of a cysteine residue in the DNA binding domain and/or phosphorylation of the DNA binding/transcriptional activation domains. Further studies are required to identify the intermediary components in the signal transduction pathway to completely understand the mechanism of induction of the NQO, gene expression in response to beta-NF and BHA. Dioxin induction of the NQO1 gene expression is mediated by XRE, an element best characterized in the case of the CYP1A1 gene. As seen for the CYP1A1 gene, dioxin induction of NQO1 gene expression may involve binding of dioxin to the Ah receptor, release of the Hsp90 protein associated with the cytosolic Ah receptor, phosphorylation of Ah receptor by protein kinase C (PKC), heterodimerization with Arnt (phosphorylated by PKC?), nuclear translocation of dioxin-Ah, receptor-Arnt complex, binding at XRE element in the promoter region of the NQO1 gene resulting in activation of the NQO1 gene. The mechanism involving the Ah receptor and XRE may also be responsible in part for the beta-NF induction of the NQO, gene expression. This is because beta-NF could bind to the Ah receptor, though at a much lower affinity as compared to dioxin. Similarly, it will be interesting to determine if dioxin induction of the NQO1 gene expression also involves the ARE element and Jun and Fos proteins. Indeed dioxin has been reported to increase the expression of the c-Fos gene. The regulation of the NQO1 gene is complex as several additional cis-elements have been identified in its promoter. Several other genes of phase II metabolism enzymes including glutathione-S-transferase, UDPG-transferase and perhaps epoxide hydrolase are expected to be co-ordinately regulated by mechanisms involving one or more ARE and XRE elements and Jun and Fos and Ah receptor proteins.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 63 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]  
BAYNEY RM, 1989, J BIOL CHEM, V264, P21793
[3]   NAD(P)H-QUINONE OXIDOREDUCTASE(1) (DT-DIAPHORASE) EXPRESSION IN NORMAL AND TUMOR-TISSUES [J].
BELINSKY, M ;
JAISWAL, AK .
CANCER AND METASTASIS REVIEWS, 1993, 12 (02) :103-117
[4]   CROSS-COUPLING OF SIGNAL TRANSDUCTION PATHWAYS - THE DIOXIN RECEPTOR MEDIATES INDUCTION OF CYTOCHROME P-450IA1 EXPRESSION VIA A PROTEIN KINASE-C-DEPENDENT MECHANISM [J].
BERGHARD, A ;
GRADIN, K ;
PONGRATZ, I ;
WHITELAW, M ;
POELLINGER, L .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (01) :677-689
[5]  
BEYER RE, 1988, ANTICANCER RES, V8, P233
[6]   ACTIVATION OF PROTEIN-KINASE-C DECREASES PHOSPHORYLATION OF C-JUN AT SITES THAT NEGATIVELY REGULATE ITS DNA-BINDING ACTIVITY [J].
BOYLE, WJ ;
SMEAL, T ;
DEFIZE, LHK ;
ANGEL, P ;
WOODGETT, JR ;
KARIN, M ;
HUNTER, T .
CELL, 1991, 64 (03) :573-584
[7]   CLONING OF THE AH-RECEPTOR CDNA REVEALS A DISTINCTIVE LIGAND-ACTIVATED TRANSCRIPTION FACTOR [J].
BURBACH, KM ;
POLAND, A ;
BRADFIELD, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (17) :8185-8189
[8]   DIOXIN-DEPENDENT ACTIVATION OF MURINE CYP1A-1 GENE-TRANSCRIPTION REQUIRES PROTEIN KINASE-C-DEPENDENT PHOSPHORYLATION [J].
CARRIER, F ;
OWENS, RA ;
NEBERT, DW ;
PUGA, A .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (04) :1856-1863
[9]  
CHAE HP, 1993, CANCER RES, V53, P447
[10]   HIGH-LEVELS OF EXPRESSION OF THE NAD(P)H-QUINONE OXIDOREDUCTASE (NQO1) GENE IN TUMOR-CELLS COMPARED TO NORMAL-CELLS OF THE SAME ORIGIN [J].
CRESTEIL, T ;
JAISWAL, AK .
BIOCHEMICAL PHARMACOLOGY, 1991, 42 (05) :1021-1027