AN ALGORITHM FOR ROBUST NONLINEAR-ANALYSIS OF RADIOIMMUNOASSAYS AND OTHER BIOASSAYS

被引:10
作者
NORMOLLE, DP
机构
[1] Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
关键词
D O I
10.1002/sim.4780122106
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The four-parameter logistic function is an appropriate model for many types of bioassays that have continuous response variables, such as radioimmunoassays. By modelling the variance of replicates in an assay, one can modify the usual parameter estimation techniques (for example, Gauss-Newton or Marquardt-Levenberg) to produce parameter estimates for the standard curve that are robust against outlying observations. This article describes the computation of robust (M-) estimates for the parameters of the four-parameter logistic function. It describes techniques for modelling the variance structure of the replicates, modifications to the usual iterative algorithms for parameter estimation in non-linear models, and a formula for inverse confidence intervals. To demonstrate the algorithm, the article presents examples where the robustly estimated four-parameter logistic model is compared with the logit-log and four-parameter logistic models with least-squares estimates.
引用
收藏
页码:2025 / 2042
页数:18
相关论文
共 12 条
  • [1] Chard, 1987, INTRO RADIOIMMUNOASS
  • [2] SIMULTANEOUS ANALYSIS OF FAMILIES OF SIGMOIDAL CURVES - APPLICATION TO BIOASSAY, RADIOLIGAND ASSAY, AND PHYSIOLOGICAL DOSE-RESPONSE CURVES
    DELEAN, A
    MUNSON, PJ
    RODBARD, D
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY, 1978, 235 (02): : E97 - E102
  • [3] FINNEY DJ, 1978, STATISTICAL METHODS
  • [4] Gill P. E., 1981, PRACTICAL OPTIMIZATI
  • [5] GILL PE, 1978, AM J NUMER ANAL, V15, P977
  • [6] Golub G.H., 1983, MATRIX COMPUTATIONS
  • [7] Hoaglin D., 1983, UNDERSTANDING ROBUST
  • [8] ROBUST ESTIMATION OF LOCATION PARAMETER
    HUBER, PJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01): : 73 - &
  • [9] NORMOLLE D, 1993, UNPUB ROBUST INVERSE
  • [10] SCHMALTZ S, 1991, INVERSE NONLINEAR ES