THE LAGRANGE-NEWTON METHOD FOR INFINITE-DIMENSIONAL OPTIMIZATION PROBLEMS

被引:45
作者
ALT, W [1 ]
机构
[1] UNIV BAYREUTH,INST MATH,W-8580 BAYREUTH,GERMANY
关键词
infinite-dimensional optimization; Lagrange-Newton method; sequential quadratic programming;
D O I
10.1080/01630569008816371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates local convergence properties of the Lagrange-Newton method for optimization problems in reflexive Banach spaces. Sufficient conditions for quadratic convergence of optimal solutions and Lagrange multipliers are given. The results are applied to optimal control problems. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:201 / 224
页数:24
相关论文
共 22 条
[1]   STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR CONE CONSTRAINED OPTIMIZATION PROBLEMS, .2. APPLICATION TO PARAMETER-ESTIMATION [J].
ALT, W .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (11-12) :1065-1076
[2]   STABILITY OF SOLUTIONS FOR A CLASS OF NONLINEAR CONE CONSTRAINED OPTIMIZATION PROBLEMS, .1. BASIC THEORY [J].
ALT, W .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (11-12) :1053-1064
[3]  
DONTCHEV AL, 1983, LECTURE NOTES CONTRO, V52
[4]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[5]  
Fiacco A. V., 1983, INTRO SENSITIVITY ST
[6]  
Fletcher R., 1981, PRACTICAL METHODS OP
[7]  
HERMES H., 1969, MATH SCI ENG
[8]  
Hestenes M.R., 1966, CALCULUS VARIATIONS
[9]  
Ioffe AD., 1979, THEORY EXTREMAL PROB
[10]  
ITO K, 1989, SENSITIVITY ANAL SOL