UNIVERSAL R-MATRIX FOR QUANTIZED (SUPER)ALGEBRAS

被引:247
作者
KHOROSHKIN, SM [1 ]
TOLSTOY, VN [1 ]
机构
[1] MV LOMONOSOV STATE UNIV,INST NUCL PHYS,MOSCOW 119899,USSR
关键词
D O I
10.1007/BF02102819
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For quantum deformations of finite-dimensional contragredient Lie (super)algebras we give an explicit formula for the universal R-matrix. This formula generalizes the analogous formulae for quantized semisimple Lie algebras obtained by M. Rosso, A. N. Kirillov, and N. Reshetikhin, Ya. S. Soibelman, and S. Z. Levendorskii. Our approach is based on careful analysis of quantized rank 1 and 2 (super)algebras, a combinatorial structure of the root systems and algebraic properties of q-exponential functions. We don't use quantum Weyl group.
引用
收藏
页码:599 / 617
页数:19
相关论文
共 18 条
[1]  
ASHEROVA RM, 1979, MAT ZAMETKI, V35, P15
[2]  
DECONCINI C, 1990, REPRESENTATIONS QUAN
[3]  
Drinfeld V.G., 1989, ALGEBRA ANAL, V1, P30
[4]  
Drinfeld V.G., 1986, P INT C MATH, V1, P789
[5]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR+, V283, P1060
[6]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[7]  
KIRILLOV AN, 1990, HUTMP90B261 PREPR
[8]  
Kulis PP, 1981, ZAPISKI NAUCHN SEMIN, V101, P101, DOI 10.1007/BF01084171
[9]  
LEVENDORSHII SZ, 1990, SOME APPLICATIONS QU
[10]  
LUSZTIG G, 1990, CANONICAL BASES ARIS