GENERALIZATIONS OF NOETHERS THEOREM IN CLASSICAL MECHANICS

被引:250
作者
SARLET, W
CANTRIJN, F
机构
关键词
D O I
10.1137/1023098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:467 / 494
页数:28
相关论文
共 60 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]   GENERALIZATION OF LIES COUNTING THEOREM FOR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS [J].
ANDERSON, RL ;
DAVISON, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (01) :301-315
[3]  
ANDERSON RL, 1979, SIAM STUDIES, V1
[4]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[5]  
Bessel-Hagen, 1921, MATH ANN, V84, P258, DOI DOI 10.1007/BF01459410
[6]  
Bluman G.W., 1974, SIMILARITY METHODS D
[7]   INVERSION OF NOETHERS THEOREM IN LAGRANGIAN FORMALISM .2. CLASSICAL FIELD THEORY [J].
CANDOTTI, E ;
PALMIERI, C ;
VITALE, B .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1970, 70 (02) :233-+
[8]   INVERSION OF NOETHERS THEOREM IN CLASSICAL DYNAMICAL-SYSTEMS [J].
CANDOTTI, E ;
VITALE, B ;
PALMIERI, C .
AMERICAN JOURNAL OF PHYSICS, 1972, 40 (03) :424-&
[9]  
CANTRIJN F, UNPUBLISHED
[10]  
CARTAN E, 1922, LECONS INVARIANTS IN