THE ASYMPTOTIC CONTOUR PROCESS OF A BINARY-TREE IS A BROWNIAN EXCURSION

被引:16
作者
GUTJAHR, W
PFLUG, GC
机构
[1] Institute of Statistics and Information Science, University of Vienna
关键词
D O I
10.1016/0304-4149(92)90147-I
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The contour process of a random binary tree t with n internal nodes is defined as the polygonal function constructed from the heights of the leaves of t (normalized by square-root n). We show that, as n --> infinity, the limiting contour process is identical in distribution to a Brownian excursion.
引用
收藏
页码:69 / 89
页数:21
相关论文
共 21 条
[1]  
ALDOUS D, 1989, CONTINUUM RANDOM TRE, V1
[2]  
Billingsley P., 2013, CONVERGE PROBAB MEAS
[3]  
DURRETT R, 1990, WEIGHTED HEIGHTS RAN
[4]   THE AVERAGE HEIGHT OF BINARY-TREES AND OTHER SIMPLE TREES [J].
FLAJOLET, P ;
ODLYZKO, A .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1982, 25 (02) :171-213
[5]  
Gutjahr W., 1991, Journal of Combinatorial Mathematics and Combinatorial Computing, V10, P105
[6]  
GUTJAHR W, 1990, IN PRESS RAIRO THEOR
[7]  
GUTJAHR W, 1990, IN PRESS GRAPHS COMB
[8]  
Ito K., 1965, DIFFUSION PROCESSES
[9]   ON THE AVERAGE OSCILLATION OF A STACK [J].
KEMP, R .
COMBINATORICA, 1982, 2 (02) :157-176
[10]  
Kemp R., 1984, FUNDAMENTALS AVERAGE