COMPUTING MINIMUM LENGTH PATHS OF A GIVEN HOMOTOPY CLASS

被引:121
作者
HERSHBERGER, J
SNOEYINK, J
机构
[1] MENTOR GRAPH CORP,SAN JOSE,CA 95131
[2] UNIV BRITISH COLUMBIA,DEPT COMP SCI,VANCOUVER V6T 1Z4,BC,CANADA
[3] STANFORD UNIV,STANFORD,CA 94305
[4] UNIV UTRECHT,UTRECHT,NETHERLANDS
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1994年 / 4卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
EUCLIDEAN SHORTEST PATHS; MINIMUM-LINK PATHS; UNIVERSAL COVERING SPACE;
D O I
10.1016/0925-7721(94)90010-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the universal covering space of a surface can be used to unify previous results on computing paths in a simple polygon. We optimize a given Path among obstacles in the plane under the Euclidean and link metrics and under polygonal convex distance functions. Besides revealing connections between the minimum paths under these three distance functions, the framework provided by the universal cover leads to simplified linear-time algorithms for shortest path trees, for minimum-link paths in simple polygons, and for paths restricted to c given orientations.
引用
收藏
页码:63 / 97
页数:35
相关论文
共 55 条
[1]   FINDING MINIMAL CONVEX NESTED POLYGONS [J].
AGGARWAL, A ;
BOOTH, H ;
OROURKE, J ;
SURI, S ;
YAP, CK .
INFORMATION AND COMPUTATION, 1989, 83 (01) :98-110
[2]  
ARKIN EM, 1991, 3RD P CAN C COMP GEO, P153
[3]  
Armstrong M. A., 1979, BASIC TOPOLOGY
[4]  
Baumgart B.G, 1975, P MAY 19 22 1975 NAT, P589, DOI DOI 10.1145/1499949.1500071
[5]  
BHATTACHARYA B, 1986, SOCS861 MCGILL U SCH
[6]  
Cassels J.W.S., 1959, INTRO GEOMETRY NUMBE, P20
[7]  
Chazelle B., 1982, 23rd Annual Symposium on Foundations of Computer Science, P339, DOI 10.1109/SFCS.1982.58
[8]   TRIANGULATING A SIMPLE POLYGON IN LINEAR TIME [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :485-524
[9]  
CLARKSON K, 1987, 3RD P ACM S COMP GEO, P251
[10]  
Cole R., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P65, DOI 10.1109/SFCS.1984.715902