CLIQUE DETECTION FOR NONDIRECTED GRAPHS - 2 NEW ALGORITHMS

被引:26
作者
GERHARDS, L
LINDENBERG, W
机构
[1] Institut für Mathematik de Gesellschaft für Mathematik und Datenverarbeitung mbH, St. Augustin 1, D-5205, Schloß Birlinghoven
关键词
D O I
10.1007/BF02248731
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Making use of special tree search algorithms the present paper describes two new methods for determining all maximal complete subgraphs (cliques) of a finite nondirected graph. In both methods the blockwise generation of all cliques induces characteristic properties, which guarantee an efficient calculation of special clique subsets, especially the set of all cliques of maximal length. Moreover, by their structure both algorithms allow to calculate the complete clique set by parallel processing. The algorithms have been tested for many series of characteristic graphs and compared with the algorithm of Bron-Kerbosch (Algorithm 457 of CACM) the most efficient algorithm which is known to the authors. © 1979 Springer-Verlag.
引用
收藏
页码:295 / 322
页数:28
相关论文
共 12 条
[1]  
Bednarek A.R., 1966, REV ROUM MATH PURE A, V11, P23
[2]  
BRON C, 1971, COLLECTED ALGORITHMS
[3]   ALGORITHM FOR CHROMATIC NUMBER OF A GRAPH [J].
CHRISTOFIDES, N .
COMPUTER JOURNAL, 1971, 14 (01) :38-+
[4]   MAXIMUM INTERNALLY STABLE SETS OF A GRAPH [J].
HAKIMI, SL ;
FRANK, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 25 (02) :296-&
[5]   A PROCEDURE FOR CLIQUE DETECTION USING THE GROUP MATRIX [J].
HARARY, F ;
ROSS, IC .
SOCIOMETRY, 1957, 20 (03) :205-215
[6]  
JOHNSON LF, 1957, 5TH P C NUM MATH, P429
[7]  
LEIFMAN LJ, 1976, CONSTRUCTION MAXIMAL
[8]  
MAGHOUT K, 1959, CR HEBD ACAD SCI, V248, P3522
[9]  
Meeusen W., 1975, J COMPUT APPL MATH, V1, P185
[10]   ON CLIQUES IN GRAPHS [J].
MOON, JW ;
MOSER, L .
ISRAEL JOURNAL OF MATHEMATICS, 1965, 3 (01) :23-&