A Q-ANALOG OF THE WRONSKIAN AND A 2ND SOLUTION OF THE HAHN-EXTON Q-BESSEL DIFFERENCE EQUATION

被引:18
作者
SWARTTOUW, RF [1 ]
MEIJER, HG [1 ]
机构
[1] DELFT UNIV TECHNOL,FAC TECH MATH & INFORMAT,2628 CD DELFT,NETHERLANDS
关键词
HAHN-EXTON Q-BESSEL FUNCTION; Q-WRONSKIAN; Q-DIFFERENCE EQUATION;
D O I
10.2307/2160480
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second solution of the q-difference equation of the Hahn-Exton q-Bessel function, corresponding to the classical Y(v)(x), is found. We introduce a q-extension of the Wronskian to determine that the two solutions form a fundamental set.
引用
收藏
页码:855 / 864
页数:10
相关论文
共 10 条
[1]  
EXTON H, 1983, BASIC HYPERGEOMETRIC
[2]  
EXTON H, 1978, JNANABHA, V8, P49
[3]  
GASPER G, 1990, ENCY MATH APPL, V0035
[4]  
Hahn W., 1953, Z ANGEW MATH MECH, V33, P270
[5]  
KOELINK HT, 1991, THESIS U LEIDEN
[6]   ON Q-ANALOGS OF THE FOURIER AND HANKEL-TRANSFORMS [J].
KOORNWINDER, TH ;
SWARTTOUW, RF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (01) :445-461
[7]  
Milne-Thomson L.M., 1951, CALCULUS FINITE DIFF
[8]  
SWARTTOUW RF, 1992, THESIS DELFT U TECHN
[9]  
VAKSMAN LL, 1989, SOV MATH DOKL, V39, P173
[10]  
Watson G.N., 1966, THEORY BESSEL FUNCTI, Vsecond