ON DETECTING STATIONARY BIFURCATIONS

被引:15
作者
Seydel, R. [1 ]
机构
[1] Univ Ulm, Dept Numer Anal, D-7900 Ulm, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1991年 / 1卷 / 02期
关键词
D O I
10.1142/S0218127491000257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Locating stationary bifurcations amounts to measuring the singularity of parameter-dependent Jacobian matrices. A well-known example of a measure of singularity is the determinant, requiring O(n) operations to calculate when a decomposition of the matrix is available. This paper discusses an alternative for the case of rank deficiency one. An algorithm will be based on elements of the inverse Jacobian. The alternative has useful scaling properties, providing estimates of a sensitivity analysis.
引用
收藏
页码:335 / 337
页数:3
相关论文
共 9 条
[1]  
Abbott J.P., 1978, J COMPUT APPL MATH, V4, P19
[2]  
Cline A. K, 1983, SIAM J SCI STAT COMP, V4, P368
[3]   ON THE COMPUTATION OF MANIFOLDS OF FOLDPOINTS FOR PARAMETER-DEPENDENT PROBLEMS [J].
DAI, RX ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) :437-446
[4]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[5]   A SURVEY OF CONDITION NUMBER ESTIMATION FOR TRIANGULAR MATRICES [J].
HIGHAM, NJ .
SIAM REVIEW, 1987, 29 (04) :575-596
[6]   TUTORIAL ON CONTINUATION [J].
Seydel, R. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01) :3-11
[7]   NUMERICAL COMPUTATION OF BRANCH POINTS IN NON-LINEAR EQUATIONS [J].
SEYDEL, R .
NUMERISCHE MATHEMATIK, 1979, 33 (03) :339-352
[8]  
Seydel R, 1988, EQUILIBRIUM CHAOS PR
[9]  
Spence A., 1991, BIFURCATION CHAOS AN