THE EIGENVALUES OF 2ND-ORDER SPECTRAL DIFFERENTIATION MATRICES

被引:85
作者
WEIDEMAN, JAC [1 ]
TREFETHEN, LN [1 ]
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1137/0725072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1279 / 1298
页数:20
相关论文
共 22 条
[1]  
BUDD C, 1984, SAMPLED FUNCTIONS EU, V44, P58
[2]   COMPUTATION OF STURM-LIOUVILLE EIGENVALUES VIA LAGRANGIAN INTERPOLATION [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1983, 37 (01) :9-16
[3]  
Canuto C., 1988, SPECTRAL METHODS FLU
[4]  
Davis PJ, 1963, INTERPOLATION APPROX
[5]  
DUBINER M, J SCI COMPUT, P3
[6]  
FULTON SR, 1984, J COMP PHYSIOL, V37, P70
[7]   A PRECONDITIONING MATRIX FOR THE CHEBYSHEV DIFFERENCING OPERATOR [J].
FUNARO, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1024-1031
[8]  
FUNARO D, 1987, MATH STUDIES, P271
[9]   THE SPECTRUM OF THE TSCHEBYSCHEV COLLOCATION OPERATOR FOR THE HEAT-EQUATION [J].
GOTTLIEB, D ;
LUSTMAN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :909-921
[10]  
GOTTLIEB D, 1980, STUD APPL MATH, V63, P67