BROWNIAN-MOTION FROM DETERMINISTIC DYNAMICS

被引:50
作者
BECK, C
机构
[1] Institut für Theoretische Physik, RWTH
来源
PHYSICA A | 1990年 / 169卷 / 02期
关键词
D O I
10.1016/0378-4371(90)90173-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain deterministic dynamical systems exhibit a transition from non-Gaussian chaotic to Brownian motion behavior when a suitable scaling limit is applied. For a simple hyperbolic model system we analyze the structure of the corresponding strange attractor, determine the invariant measure and elucidate the transition scenario leading to a Gaussian stochastic process. © 1990.
引用
收藏
页码:324 / 336
页数:13
相关论文
共 47 条
  • [1] FROM STOCHASTIC-PROCESSES TO THE HYDRODYNAMIC EQUATIONS
    BECK, C
    ROEPSTORFF, G
    [J]. PHYSICA A, 1990, 165 (02): : 270 - 278
  • [2] ERGODIC PROPERTIES OF A KICKED DAMPED PARTICLE
    BECK, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (01) : 51 - 60
  • [3] UPPER AND LOWER BOUNDS ON THE RENYI DIMENSIONS AND THE UNIFORMITY OF MULTIFRACTALS
    BECK, C
    [J]. PHYSICA D, 1990, 41 (01): : 67 - 78
  • [4] FROM DYNAMIC-SYSTEMS TO THE LANGEVIN EQUATION
    BECK, C
    ROEPSTORFF, G
    [J]. PHYSICA A, 1987, 145 (1-2): : 1 - 14
  • [5] BECK C, 1990, HIGHER CORRELATION F
  • [6] BECK C, 1988, THESIS RWTH AACHEN
  • [7] BECK C, 1990, THERMODYNAMIC FORMAL
  • [8] Billingsley P, 1968, CONVERGENCE PROBABIL
  • [9] BOHR T, 1988, DIRECTIONS CHAOS
  • [10] Bunimovich L. A., 1974, Theory of Probability and Its Applications, V19, P65, DOI 10.1137/1119006