FINITE-ELEMENT APPROXIMATION OF A PERIODIC GINZBURG-LANDAU MODEL FOR TYPE-II SUPERCONDUCTORS

被引:12
作者
DU, Q
GUNZBURGER, M
PETERSON, J
机构
[1] VIRGINIA TECH,DEPT MATH,BLACKSBURG,VA 24061
[2] MICHIGAN STATE UNIV,DEPT MATH,E LANSING,MI 48824
关键词
D O I
10.1007/BF01388682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider efficient finite element algorithms for the computational simulation of type-II superconductors. The algorithms are based on discretizations of a periodic Ginzburg-Landau model. Periodicity is defined with respect to a non-orthogonal lattice that is not necessarily aligned with the coordinate axes; also, the primary dependent variables employed in the model satisfy non-standard ''quasi''-periodic boundary conditions. After introducing the model, we define finite element schemes, derive error estimates of optimal order, and present the results of some numerical calculations. For a similar quality of simulation, the resulting algorithms seem to be significantly less costly than are previously used numerical approximation methods.
引用
收藏
页码:85 / 114
页数:30
相关论文
共 24 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
[Anonymous], 1957, ZH EKSP TEOR FIZ+
[3]  
BABUSKA I, 1972, MATH FDN FINITE ELEM, P3
[4]  
BARDEEN J, 1956, ENCYCL PHYS, V15, P17
[5]   GINSBURG-LANDAU THEORY OF VORTEX LATTICE IN TYPE-II SUPERCONDUCTORS FOR ALL VALUES OF CHI AND BETA [J].
BRANDT, EH .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1972, 51 (01) :345-&
[6]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[7]  
CHAPMAN S, 1992, IN PRESS SIAM REV
[8]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[9]  
CROUZIEZ M, 1989, NUMREICAL APPROX BIF
[10]  
de Gennes P. G., 1966, SUPERCONDUCTIVITY ME