THE DISCRETE SELF-TRAPPING EQUATION AND THE PAINLEVE PROPERTY

被引:10
作者
HENNIG, D
机构
[1] Inst. fur Theor. Phys., Humboldt-Univ. zu Berlin
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 05期
关键词
D O I
10.1088/0305-4470/25/5/028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From the discrete self-trapping (DST) equation for three degrees of freedom rewritten in terms of the density matrix one can derive an autonomous system of real first-order ordinary differential equations by using SU(3) notation. Performing a Painleve analysis, it is found that, depending on the parameters of the system, integrable and non-integrable cases can be distinguished.
引用
收藏
页码:1247 / 1257
页数:11
相关论文
共 12 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]   KOWALEWSKI ASYMPTOTIC METHOD, KAC-MOODY LIE-ALGEBRAS AND REGULARIZATION [J].
ADLER, M ;
VANMOERBEKE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (01) :83-106
[3]   THE ALGEBRAIC INTEGRABILITY OF GEODESIC-FLOW ON SO(4) [J].
ADLER, M ;
VANMOERBEKE, P .
INVENTIONES MATHEMATICAE, 1982, 67 (02) :297-331
[4]   CLASSICAL AND QUANTUM ANALYSIS OF CHAOS IN THE DISCRETE SELF-TRAPPING EQUATION [J].
CRUZEIROHANSSON, L ;
FEDDERSEN, H ;
FLESCH, R ;
CHRISTIANSEN, PL ;
SALERNO, M ;
SCOTT, AC .
PHYSICAL REVIEW B, 1990, 42 (01) :522-526
[5]   NUMERICAL EVIDENCE OF A SHARP ORDER WINDOW IN A HAMILTONIAN SYSTEM [J].
DEFILIPPO, S ;
GIRARD, MF ;
SALERNO, M .
PHYSICA D, 1988, 29 (03) :421-426
[6]   AN INTEGRABLE CLASSICAL SPIN CHAIN [J].
ISHIMORI, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (11) :3417-3418
[7]   CORRELATION EXPONENTS FOR TRAJECTORIES IN THE LOW-DIMENSIONAL DISCRETE SELFTRAPPING EQUATION [J].
JENSEN, JH ;
CHRISTIANSEN, PL ;
ELGIN, JN ;
GIBBON, JD ;
SKOVGAARD, O .
PHYSICS LETTERS A, 1985, 110 (7-8) :429-431
[8]   SOLITON - NEW CONCEPT IN APPLIED SCIENCE [J].
SCOTT, AC ;
CHU, FYF ;
MCLAUGHLIN, DW .
PROCEEDINGS OF THE IEEE, 1973, 61 (10) :1443-1483
[9]  
Steeb W. H., 1988, NONLINEAR EVOLUTION
[10]  
VONMOERBEKE P, 1988, P WORKSHOP FINITE DI