THE PROMOTER REGION OF THE YEAST KAR2 (BIP) GENE CONTAINS A REGULATORY DOMAIN THAT RESPONDS TO THE PRESENCE OF UNFOLDED PROTEINS IN THE ENDOPLASMIC-RETICULUM

被引:308
作者
KOHNO, K
NORMINGTON, K
SAMBROOK, J
GETHING, MJ
MORI, K
机构
[1] UNIV TEXAS,SW MED CTR,DEPT BIOCHEM,5323 HARRY HINES BLVD,DALLAS,TX 75235
[2] UNIV TEXAS,SW MED CTR,HOWARD HUGHES MED INST,DALLAS,TX 75235
关键词
D O I
10.1128/MCB.13.2.877
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The endoplasmic reticulum (ER) of eukaryotic cells contains an abundant 78,000-Da protein (BiP) that is involved in the translocation, folding, and assembly of secretory and transmembrane proteins. In the yeast Saccharomyces cerevisiae, as in mammalian cells, BiP mRNA is synthesized at a high basal rate and is further induced by the presence of increased amounts of unfolded proteins in the ER. However, unlike mammalian BiP, yeast BiP is also induced severalfold by heat shock, albeit in a transient fashion. To identify the regulatory sequences that respond to these stimuli in the yeast KAR2 gene that encodes BiP, we have cloned a 1.3-kb segment of DNA from the region upstream of the sequences coding for BiP and fused it to a reporter gene, the Escherichia coli beta-galactosidase gene. Analysis of a series of progressive 5' truncations as well as internal deletions of the upstream sequence showed that the. information required for accurate transcriptional regulation of the KAR2 gene in S. cerevisiae is contained within a approximately 230-bp XhoI-DraI fragment (nucleotides -245 to -9) and that this fragment contains at least two cis-acting elements, one (heat shock element [HSE]) responding to heat shock and the other (unfolded protein response element [UPR]) responding to the presence of unfolded proteins in the ER. The HSE and UPR elements are functionally independent of each other but work additively for maximum induction of the yeast KAR2 gene. Lying between these two elements is a GC-rich region that is similar in sequence to the consensus element for binding of the mammalian transcription factor Sp1 and that is involved in the basal expression of the KAR2 gene. Finally, we provide evidence suggesting that yeast cells monitor the concentration of free BiP in the ER and adjust the level of transcription of the KAR2 gene accordingly; this effect is mediated via the UPR element in the KAR2 promoter.
引用
收藏
页码:877 / 890
页数:14
相关论文
共 67 条
[1]   CHARACTERIZATION OF A GENE-PRODUCT (SEC53P) REQUIRED FOR PROTEIN ASSEMBLY IN THE YEAST ENDOPLASMIC-RETICULUM [J].
BERNSTEIN, M ;
HOFFMANN, W ;
AMMERER, G ;
SCHEKMAN, R .
JOURNAL OF CELL BIOLOGY, 1985, 101 (06) :2374-2382
[2]   BIP ASSOCIATES WITH NEWLY SYNTHESIZED SUBUNITS OF THE MOUSE MUSCLE NICOTINIC RECEPTOR [J].
BLOUNT, P ;
MERLIE, JP .
JOURNAL OF CELL BIOLOGY, 1991, 113 (05) :1125-1132
[3]   SEC11 IS REQUIRED FOR SIGNAL PEPTIDE PROCESSING AND YEAST-CELL GROWTH [J].
BOHNI, PC ;
DESHAIES, RJ ;
SCHEKMAN, RW .
JOURNAL OF CELL BIOLOGY, 1988, 106 (04) :1035-1042
[4]   POSTTRANSLATIONAL ASSOCIATION OF IMMUNOGLOBULIN HEAVY-CHAIN BINDING-PROTEIN WITH NASCENT HEAVY-CHAINS IN NONSECRETING AND SECRETING HYBRIDOMAS [J].
BOLE, DG ;
HENDERSHOT, LM ;
KEARNEY, JF .
JOURNAL OF CELL BIOLOGY, 1986, 102 (05) :1558-1566
[5]  
BOORSTEIN WR, 1990, J BIOL CHEM, V265, P18912
[6]   RAT GENE ENCODING THE 78-KDA GLUCOSE-REGULATED PROTEIN GRP78 - ITS REGULATORY SEQUENCES AND THE EFFECT OF PROTEIN GLYCOSYLATION ON ITS EXPRESSION [J].
CHANG, SC ;
WOODEN, SK ;
NAKAKI, T ;
KIM, YK ;
LIN, AY ;
KUNG, L ;
ATTENELLO, JW ;
LEE, AS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (03) :680-684
[7]   GLUCOSE-REGULATED PROTEIN (GRP94 AND GRP78) GENES SHARE COMMON REGULATORY DOMAINS AND ARE COORDINATELY REGULATED BY COMMON TRANS-ACTING FACTORS [J].
CHANG, SC ;
ERWIN, AE ;
LEE, AS .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (05) :2153-2162
[8]  
CRAIG EA, 1990, STRESS PROTEINS BIOL, P301
[9]   SEC62 ENCODES A PUTATIVE MEMBRANE-PROTEIN REQUIRED FOR PROTEIN TRANSLOCATION INTO THE YEAST ENDOPLASMIC-RETICULUM [J].
DESHAIES, RJ ;
SCHEKMAN, R .
JOURNAL OF CELL BIOLOGY, 1989, 109 (06) :2653-2664
[10]   THE RELATIONSHIP OF N-LINKED GLYCOSYLATION AND HEAVY-CHAIN BINDING-PROTEIN ASSOCIATION WITH THE SECRETION OF GLYCOPROTEINS [J].
DORNER, AJ ;
BOLE, DG ;
KAUFMAN, RJ .
JOURNAL OF CELL BIOLOGY, 1987, 105 (06) :2665-2674