A RANDOM-MATRIX MODEL FOR THE NONPERTURBATIVE RESPONSE OF A COMPLEX QUANTUM SYSTEM

被引:38
作者
WILKINSON, M [1 ]
AUSTIN, EJ [1 ]
机构
[1] UNIV STRATHCLYDE,DEPT PHYS & APPL PHYS,GLASGOW G4 0NG,LANARK,SCOTLAND
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 08期
关键词
D O I
10.1088/0305-4470/28/8/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the dynamics of a complex quantum system subjected to a time-dependent perturbation, using a random matrix approach. The dynamics are described by a diffusion constant characterizing the spread of the probability distribution for the energy of a particle which was initially in an eigenstate. We discuss a system of stochastic differential equations which are a model for the Schrodinger equation written in an adiabatic basis. We examine the dependence of the diffusion constant D on the rate of change of the perturbation parameter, X. Our analysis indicates that D alpha X(2), in agreement with the Kubo formula, up to a critical velocity X*; for faster perturbations, the rate of diffusion is lower than that predicted from the Kubo formula. These predictions are confirmed in numerical experiments on a banded random matrix model. The implications of this result are discussed.
引用
收藏
页码:2277 / 2296
页数:20
相关论文
共 17 条
[1]  
Porter CE, (1965)
[2]  
Gutzwiller MC, (1990)
[3]  
Wilkinson M, Austin EJ, Phys. Rev., 46, 1, pp. 64-74, (1992)
[4]  
Wilkinson M, Phys. Rev., 41, 9, pp. 4645-4652, (1990)
[5]  
Chirikov B, Shepelyansky DL, Izraelev F, Sov. Sci. Rev., 2, (1981)
[6]  
Wilkinson M, J. Phys. A: Math. Gen., 21, 21, pp. 4021-4037, (1988)
[7]  
Kubo R, A GENERAL EXPRESSION FOR THE CONDUCTIVITY TENSOR, Canadian Journal of Physics, 34, 12 a, pp. 1274-1277, (1956)
[8]  
Greenwood DA, Proc. Phys. Soc., 68, pp. 585-596, (1958)
[9]  
van Kampen NG, Acta Phys. Norvegica, 5, pp. 279-284, (1971)
[10]  
Shapere A, Wilczek F, (1989)