DELTA-PH-DEPENDENT AMINO-ACID-TRANSPORT INTO PLASMA-MEMBRANE VESICLES ISOLATED FROM SUGAR-BEET LEAVES .1. EVIDENCE FOR CARRIER-MEDIATED, ELECTROGENIC FLUX THROUGH MULTIPLE TRANSPORT-SYSTEMS

被引:68
作者
LI, ZC
BUSH, DR
机构
[1] USDA ARS,PHOTOSYNTH RES UNIT,URBANA,IL 61801
[2] UNIV ILLINOIS,DEPT PLANT BIOL,URBANA,IL 61801
关键词
D O I
10.1104/pp.94.1.268
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Amino acid transport into plasma membrane vesicles isolated from mature sugar beet (Beta vulgaris L. cv Great Western) leaves was investigated. The transport of alanine, leucine, glutamine, glutamate, isoleucine, and arginine was driven by a trans-membrane proton concentration difference. ΔpH-Dependent alanine, leucine, glutamine, and glutamate transport exhibited simple Michaelis-Menten kinetics, and double-reciprocal plots of the data were linear with apparent Km values of 272, 346, 258, and 1981 micromolar, respectively. These results are consistent with carrier mediated transport. ΔpH-Dependent isoleucine and arginine transport exhibited biphasic kinetics, suggesting these amino acids may be transported by at least two transport systems. Symport mediated alanine transport was electrogenic as demonstrated by the effect of membrane potential (ΔΨ) on ΔpH-dependent flux. In the absence of significant charge compensation, a low rate of alanine transport was observed. When ΔΨ was held at 0 millivolt with symmetric potassium concentrations and valinomycin, the rate of flux was stimulated fourfold. In the presence of a negative ΔΨ, alanine transport increased sixfold. These results are consistent with an electrogenic transport process which results in a net flux of positive charge into the vesicles. The effect of changing ΔΨ on the kinetics of alanine transport altered Vmax with no apparent change in Km. Amino acid transport was inhibited by the protein modifier diethyl pyrocarbonate, but was insensitive to N-ethylmaleimide, 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid, p-chloromercuribenzenesulfonic acid, phenylglyoxal, and N,N′-dicyclohexylcarbodiimide. Four amino acid symport systems, two neutral, one acidic, and one basic, were resolved based on inter-amino acid competition experiments. One neutral system appears to be active for all neutral amino acids while the second exhibited a low affinity for isoleucine, threonine, valine, and proline. Although each symport was relatively specific for a given group of amino acids, each system exhibited some crossover specificity for amino acids in other groups.
引用
收藏
页码:268 / 277
页数:10
相关论文
共 25 条
[1]   ASSAY OF PROTEINS IN PRESENCE OF INTERFERING MATERIALS [J].
BENSADOUN, A ;
WEINSTEIN, D .
ANALYTICAL BIOCHEMISTRY, 1976, 70 (01) :241-250
[2]   KINETICS AND SPECIFICITY OF AMINO-ACID-UPTAKE BY THE DUCKWEED SPIRODELA-POLYRHIZA (L) SCHLEIDEN [J].
BORSTLAP, AC ;
MEENKS, JLD ;
VANECK, WF ;
BICKER, JTE .
JOURNAL OF EXPERIMENTAL BOTANY, 1986, 37 (180) :1020-1035
[3]  
BOWN AW, 1989, PLANT MEMBRANE TRANS, P329
[4]   ELECTROGENICITY, PH-DEPENDENCE, AND STOICHIOMETRY OF THE PROTON-SUCROSE SYMPORT [J].
BUSH, DR .
PLANT PHYSIOLOGY, 1990, 93 (04) :1590-1596
[5]   AMINO-ACID TRANSPORT INTO MEMBRANE-VESICLES ISOLATED FROM ZUCCHINI - EVIDENCE OF A PROTON-AMINO ACID SYMPORT IN THE PLASMALEMMA [J].
BUSH, DR ;
LANGSTONUNKEFER, PJ .
PLANT PHYSIOLOGY, 1988, 88 (02) :487-490
[6]   TABTOXININE-BETA-LACTAM TRANSPORT INTO CULTURED CORN CELLS - UPTAKE VIA AN AMINO-ACID TRANSPORT-SYSTEM [J].
BUSH, DR ;
LANGSTONUNKEFER, PJ .
PLANT PHYSIOLOGY, 1987, 85 (03) :845-849
[7]   PROTON-COUPLED SUCROSE TRANSPORT IN PLASMALEMMA VESICLES ISOLATED FROM SUGAR-BEET (BETA-VULGARIS L CV GREAT WESTERN) LEAVES [J].
BUSH, DR .
PLANT PHYSIOLOGY, 1989, 89 (04) :1318-1323
[8]   AMINO-ACID UPTAKE INTO CULTIVATED MESOPHYLL-CELLS FROM ASPARAGUS-OFFICINALIS L [J].
CHERUEL, J ;
JULLIEN, M ;
SURDINKERJAN, Y .
PLANT PHYSIOLOGY, 1979, 63 (04) :621-626
[9]   ROLE OF AMINO-ACID-TRANSPORT AND COUNTERTRANSPORT IN NUTRITION AND METABOLISM [J].
CHRISTENSEN, HN .
PHYSIOLOGICAL REVIEWS, 1990, 70 (01) :43-77
[10]   EVIDENCE FOR AMINO ACID-H+ CO-TRANSPORT IN OAT COLEOPTILES [J].
ETHERTON, B ;
RUBINSTEIN, B .
PLANT PHYSIOLOGY, 1978, 61 (06) :933-937